skip to main content

Title: Reaction of Electrons with DNA: Radiation Damage to Radiosensitization
This review article provides a concise overview of electron involvement in DNA radiation damage. The review begins with the various states of radiation-produced electrons: Secondary electrons (SE), low energy electrons (LEE), electrons at near zero kinetic energy in water (quasi-free electrons, (e−qf)) electrons in the process of solvation in water (presolvated electrons, e−pre), and fully solvated electrons (e−aq). A current summary of the structure of e−aq, and its reactions with DNA-model systems is presented. Theoretical works on reduction potentials of DNA-bases were found to be in agreement with experiments. This review points out the proposed role of LEE-induced frank DNA-strand breaks in ion-beam irradiated DNA. The final section presents radiation-produced electron-mediated site-specific formation of oxidative neutral aminyl radicals from azidonucleosides and the evidence of radiosensitization provided by these aminyl radicals in azidonucleoside-incorporated breast cancer cells.
Authors:
; ; ;
Award ID(s):
1920110
Publication Date:
NSF-PAR ID:
10286733
Journal Name:
International Journal of Molecular Sciences
Volume:
20
Issue:
16
Page Range or eLocation-ID:
3998
ISSN:
1422-0067
Sponsoring Org:
National Science Foundation
More Like this
  1. Among the radicals (hydroxyl radical (•OH), hydrogen atom (H•), and solvated electron (esol−)) that are generated via water radiolysis, •OH has been shown to be the main transient species responsible for radiation damage to DNA via the indirect effect. Reactions of these radicals with DNA-model systems (bases, nucleosides, nucleotides, polynucleotides of defined sequences, single stranded (ss) and double stranded (ds) highly polymeric DNA, nucleohistones) were extensively investigated. The timescale of the reactions of these radicals with DNA-models range from nanoseconds (ns) to microseconds (µs) at ambient temperature and are controlled by diffusion or activation. However, those studies carried out in dilute solutions that model radiation damage to DNA via indirect action do not turn out to be valid in dense biological medium, where solute and water molecules are in close contact (e.g., in cellular environment). In that case, the initial species formed from water radiolysis are two radicals that are ultrashort-lived and charged: the water cation radical (H2O•+) and prethermalized electron. These species are captured by target biomolecules (e.g., DNA, proteins, etc.) in competition with their inherent pathways of proton transfer and relaxation occurring in less than 1 picosecond. In addition, the direct-type effects of radiation, i.e., ionization of macromoleculemore »plus excitations proximate to ionizations, become important. The holes (i.e., unpaired spin or cation radical sites) created by ionization undergo fast spin transfer across DNA subunits. The exploration of the above-mentioned ultrafast processes is crucial to elucidate our understanding of the mechanisms that are involved in causing DNA damage via direct-type effects of radiation. Only recently, investigations of these ultrafast processes have been attempted by studying concentrated solutions of nucleosides/tides under ambient conditions. Recent advancements of laser-driven picosecond electron accelerators have provided an opportunity to address some long-term puzzling questions in the context of direct-type and indirect effects of DNA damage. In this review, we have presented key findings that are important to elucidate mechanisms of complex processes including excess electron-mediated bond breakage and hole transfer, occurring at the single nucleoside/tide level.« less
  2. Platinum coordination complexes have found wide applications as chemotherapeutic anticancer drugs in synchronous combination with radiation (chemoradiation) as well as precursors in focused electron beam induced deposition (FEBID) for nano-scale fabrication. In both applications, low-energy electrons (LEE) play an important role with regard to the fragmentation pathways. In the former case, the high-energy radiation applied creates an abundance of reactive photo- and secondary electrons that determine the reaction paths of the respective radiation sensitizers. In the latter case, low-energy secondary electrons determine the deposition chemistry. In this contribution, we present a combined experimental and theoretical study on the role of LEE interactions in the fragmentation of the Pt(II) coordination compound cis-PtBr2(CO)2. We discuss our results in conjunction with the widely used cancer therapeutic Pt(II) coordination compound cis-Pt(NH3)2Cl2 (cisplatin) and the carbonyl analog Pt(CO)2Cl2, and we show that efficient CO loss through dissociative electron attachment dominates the reactivity of these carbonyl complexes with low-energy electrons, while halogen loss through DEA dominates the reactivity of cis-Pt(NH3)2Cl2.
  3. Hydrogen-rich cation radicals (GATT + 2H) + ˙ and (AGTT + 2H) + ˙ represent oligonucleotide models of charged hydrogen atom adducts to DNA. These tetranucleotide cation radicals were generated in the gas phase by one-electron reduction of the respective (GATT + 2H) 2+ and (AGTT + 2H) 2+ dications in which the charging protons were placed on the guanine and adenine nucleobases. We used wavelength-dependent UV/Vis photodissociation in the valence-electron excitation region of 210–700 nm to produce action spectra of (GATT + 2H) + ˙ and (AGTT + 2H) + ˙ that showed radical-associated absorption bands in the near-UV (330 nm) and visible (400–440 nm) regions. Born–Oppenheimer molecular dynamics and density-functional theory calculations were used to obtain and rank by energy multiple (GATT + 2H) dication and cation-radical structures. Time-dependent density functional theory (TD-DFT) calculations of excited-state energies and electronic transitions in (GATT + 2H) + ˙ were augmented by vibronic spectra calculations at 310 K for selected low-energy cation radicals to provide a match with the action spectrum. The stable product of one-electron reduction was identified as having a 7,8-dihydroguanine cation radical moiety, formed by intramolecular hydrogen atom migration from adenine N-1–H. The hydrogen migration was calculated tomore »have a transition state with a low activation energy, E a = 96.5 kJ mol −1 , and positive activation entropy, Δ S ‡ = 75 J mol −1 K −1 . This allowed for a fast isomerization of the primary reduction products on the ion-trap time scale of 150 ms that was substantially accelerated by highly exothermic electron transfer.« less
  4. ABSTRACT: We report the generation and spectroscopic study of hydrogen-rich DNA tetranucleotide cation radicals (GATC+2H)+• and (AGTC+2H)+•. The radicals were generated in the gas phase by one-electron reduction of the respective dications (GATC +2H)2+ and (AGTC+2H)2+ and characterized by collision-induced dissociation and photodissociation tandem mass spectrometry and UV−vis photodissociation action spectroscopy. Among several absorption bands observed for (GATC+2H)+•, the bands at 340 and 450 nm were assigned to radical chromophores. Timedependent density functional theory calculations including vibronic transitions in the visible region of the spectrum were used to provide theoretical absorption spectra of several low-energy tetranucleotide tautomers having cytosine-, adenine-, and thymine- based radical chromophores that did not match the experimental spectrum. Instead, the calculations indicated the formation of a new isomer with the 7,8-H-dihydroguanine cation radical moiety. The isomerization involved hydrogen migration from the cytosine N-3−H radical to the C-8 position in N-7-protonated guanine that was calculated to be 87 kJ mol−1 exothermic and had a low-energy transition state. Although the hydrogen migration was facilitated by the spatial proximity of the guanine and cytosine bases in the low-energy (GATC+2H)+• intermediate formed by electron transfer, the reaction was calculated to have a large negative activation entropy. Rice−Ramsperger−Kassel−Marcus (RRKM) and transitionmore »state theory kinetic analysis indicated that the isomerization occurred rapidly in hot cation radicals produced by electron transfer with the population-weighed rate constant of k = 8.9 × 103 s−1. The isomerization was calculated to be too slow to proceed on the experimental time scale in thermal cation radicals at 310 K.« less
  5. Dissolved natural organic matter (DOM) is a complex matrix of organic matter that is ubiquitous in natural aquatic environments. So far, substantial research has been conducted on the DOM adsorption on Mn oxides as well as the reduction processes of Mn oxides by DOM. However, little is known about the oxidative roles of DOM in oxidizing Mn2+(aq) to Mn(III/IV) oxide solids. Sunlight-driven processes can initiate the degradation of DOM accompanied by the formation of photochemically produced reactive intermediates, including excited triplet state DOM (3DOM*), hydroxyl radical (•OH), superoxide radical (O2•−), hydrogen peroxide (H2O2), and singlet oxygen (1O2). Further, in the presence of halide ions, reactive halogen species can be generated by reactions between 3DOM* and halide ions, and by reactions between •OH and halide ions. In this study, we found that the solution pH controlled the oxidation of Mn2+(aq) to Mn oxide solids during photolysis of DOM. Among the reactive oxygen species, Mn2+(aq) was found to be oxidized to Mn oxide solids mainly by O2•−. The DOM with different quantities of aromatic functional groups affected its oxidative capability. With the addition of bromide ions (Br−), Mn2+(aq) oxidation was promoted further by formation Br radicals, which can also oxidize Mn2+(aq) tomore »Mn oxide solids. These findings can help us better understand the oxidative role of DOM in the formation of Mn oxide solids in organic-rich surface water. In addition, this study assists in comprehending the impacts of the photolytic reactions between DOM and halide ions and their resulting reactive oxygen and halogen species on the oxidation and reduction processes of other transition metal oxides in the environment.« less