skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A Fast Adaptive k-means with No Bounds
This paper presents a novel accelerated exact k-means called as "Ball k-means" by using the ball to describe each cluster, which focus on reducing the point-centroid distance computation. It can exactly find its neighbor clusters for each cluster, resulting distance computations only between a point and its neighbor clusters' centroids instead of all centroids. What's more, each cluster can be divided into "stable area" and "active area", and the latter one is further divided into some exact "annular area". The assignment of the points in the "stable area" is not changed while the points in each "annular area" will be adjusted within a few neighbor clusters. There are no upper or lower bounds in the whole process. Moreover, ball k-means uses ball clusters and neighbor searching along with multiple novel stratagems for reducing centroid distance computations. In comparison with the current state-of-the art accelerated exact bounded methods, the Yinyang algorithm and the Exponion algorithm, as well as other top-of-the-line tree-based and bounded methods, the ball k-means attains both higher performance and performs fewer distance calculations, especially for large-k problems. The faster speed, no extra parameters and simpler design of "Ball k-means" make it an all-around replacement of the naive k-means.  more » « less
Award ID(s):
1631776
PAR ID:
10286756
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
IEEE Transactions on Pattern Analysis and Machine Intelligence
ISSN:
0162-8828
Page Range / eLocation ID:
1 to 1
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Ranzato, M.; Beygelzimer, A.; Dauphin, Y.; Liang, P.S.; Vaughan, J. W. (Ed.)
    We provide theoretical guarantees for label consistency in generalized k-means problems, with an emphasis on the overfitted case where the number of clusters used by the algorithm is more than the ground truth. We provide conditions under which the estimated labels are close to a refinement of the true cluster labels. We consider both exact and approximate recovery of the labels. Our results hold for any constant-factor approximation to the k-means problem. The results are also model-free and only based on bounds on the maximum or average distance of the data points to the true cluster centers. These centers themselves are loosely defined and can be taken to be any set of points for which the aforementioned distances can be controlled. We show the usefulness of the results with applications to some manifold clustering problems. 
    more » « less
  2. Keil, Mark; Mondal, Debajyoti (Ed.)
    Finding the kth nearest neighbor to a query point is a ubiquitous operation in many types of metric computations, especially those in unsupervised machine learning. In many such cases, the distance to k sample points is used as an estimate of the local density of the sample. In this paper, we give an algorithm that takes a finite metric (P,d) and an integer k and produces a subset S ⊆ P with the property that for any q ∈ P, the distance to the second nearest point of S to q is a constant factor approximation to the distance to the kth nearest point of P to q. Thus, the sample S may be used in lieu of P. In addition to being much smaller than P, the distance queries on S only require finding the second nearest neighbor instead of the kth nearest neighbor. This is a significant improvement, especially because theoretical guarantees on kth nearest neighbor methods often require k to grow as a function of the input size n. 
    more » « less
  3. We provide a new bi-criteria O(log2k) competitive algorithm for explainable k-means clustering. Explainable k-means was recently introduced by Dasgupta, Frost, Moshkovitz, and Rashtchian (ICML 2020). It is described by an easy to interpret and understand (threshold) decision tree or diagram. The cost of the explainable k-means clustering equals to the sum of costs of its clusters; and the cost of each cluster equals the sum of squared distances from the points in the cluster to the center of that cluster. The best non bi-criteria algorithm for explainable clustering O(k) competitive, and this bound is tight. Our randomized bi-criteria algorithm constructs a threshold decision tree that partitions the data set into (1+δ)k clusters (where δ∈(0,1) is a parameter of the algorithm). The cost of this clustering is at most O(1/δ⋅log2k) times the cost of the optimal unconstrained k-means clustering. We show that this bound is almost optimal. 
    more » « less
  4. We give an algorithm for Centroid-Linkage Hierarchical Agglomerative Clustering (HAC), which computes a $$c$$-approximate clustering in roughly $$n^{1+O(1/c^2)}$$ time. We obtain our result by combining a new Centroid-Linkage HAC algorithm with a novel fully dynamic data structure for nearest neighbor search which works under adaptive updates. We also evaluate our algorithm empirically. By leveraging a state-of-the-art nearest-neighbor search library, we obtain a fast and accurate Centroid-Linkage HAC algorithm. Compared to an existing state-of-the-art exact baseline, our implementation maintains the clustering quality while delivering up to a $$36\times$$ speedup due to performing fewer distance comparisons. 
    more » « less
  5. Semidefinite programming (SDP) is a powerful tool for tackling a wide range of computationally hard problems such as clustering. Despite the high accuracy, semidefinite programs are often too slow in practice with poor scalability on large (or even moderate) datasets. In this paper, we introduce a linear time complexity algorithm for approximating an SDP relaxed K-means clustering. The proposed sketch-and-lift (SL) approach solves an SDP on a subsampled dataset and then propagates the solution to all data points by a nearest-centroid rounding procedure. It is shown that the SL approach enjoys a similar exact recovery threshold as the K-means SDP on the full dataset, which is known to be information-theoretically tight under the Gaussian mixture model. The SL method can be made adaptive with enhanced theoretic properties when the cluster sizes are unbalanced. Our simulation experiments demonstrate that the statistical accuracy of the proposed method outperforms state-of-the-art fast clustering algorithms without sacrificing too much computational efficiency, and is comparable to the original K-means SDP with substantially reduced runtime. 
    more » « less