skip to main content

Title: Unveiling the mechanisms behind the ferroelectric response in the Sr(Nb,Ta)O 2 N oxynitrides
Oxynitride perovskites of the type ABO 2 N have attracted considerable attention thanks to their potential ferroelectric behavior and tunable bandgap energy, making them ideal candidates for photocatalysis processes. Therefore, in order to shed light on the origin of their ferroelectric response, here we report a complete analysis of the structural and vibrational properties of SrNbO 2 N and SrTaO 2 N oxynitrides. By employing first-principles calculations, we analyzed the symmetry in-equivalent structures considering the experimentally reported parent I 4/ mcm space group (with a phase a 0 a 0 c − in Glazer's notation). Based on the I 4/ mcm reference within the 20-atoms unit-cell, we found and studied the ensemble of structures where different octahedral anionic orderings are allowed by symmetry. Thus, by exploring the vibrational landscape of the cis - and trans -type configuration structures and supported by the ionic eigendisplacements and the Born effective charges, we explained the mechanism responsible for the appearance of stable ferroelectric phases in both anionic orderings. The latter goes from covalent-driven in the trans -type ordering to the geometrically-driven in the cis -type configuration. Finally, we found in both cases that the biaxial xy epitaxial strain considerably enhances such ferroelectric response.
Authors:
; ;
Award ID(s):
1740111
Publication Date:
NSF-PAR ID:
10286760
Journal Name:
Physical Chemistry Chemical Physics
ISSN:
1463-9076
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Nonlinear photocurrent in time-reversal invariant noncentrosymmetric systems such as ferroelectric semimetals sparked tremendous interest of utilizing nonlinear optics to characterize condensed matter with exotic phases. Here we provide a microscopic theory of two types of second-order nonlinear direct photocurrents, magnetic shift photocurrent (MSC) and magnetic injection photocurrent (MIC), as the counterparts of normal shift current (NSC) and normal injection current (NIC) in time-reversal symmetry and inversion symmetry broken systems. We show that MSC is mainly governed by shift vector and interband Berry curvature, and MIC is dominated by absorption strength and asymmetry of the group velocity difference at time-reversedmore »±kpoints. Taking$${\cal{P}}{\cal{T}}$$PT-symmetric magnetic topological quantum material bilayer antiferromagnetic (AFM) MnBi2Te4as an example, we predict the presence of large MIC in the terahertz (THz) frequency regime which can be switched between two AFM states with time-reversed spin orderings upon magnetic transition. In addition, external electric field breaks$${\cal{P}}{\cal{T}}$$PTsymmetry and enables large NSC response in bilayer AFM MnBi2Te4, which can be switched by external electric field. Remarkably, both MIC and NSC are highly tunable under varying electric field due to the field-induced large Rashba and Zeeman splitting, resulting in large nonlinear photocurrent response down to a few THz regime, suggesting bilayer AFM-zMnBi2Te4as a tunable platform with rich THz and magneto-optoelectronic applications. Our results reveal that nonlinear photocurrent responses governed by NSC, NIC, MSC, and MIC provide a powerful tool for deciphering magnetic structures and interactions which could be particularly fruitful for probing and understanding magnetic topological quantum materials.

    « less
  2. Reported in this contribution are the synthesis and crystal structures of two new Fe III complexes of 5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane (HMC), namely, dichlorido(5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane)iron(III) chloride, [FeCl 2 (C 16 H 36 N 4 )]Cl or cis -[FeCl 2 ( rac -HMC)]Cl ( 1 ), and dichlorido(5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane)iron(III) tetrachloridoferrate, [FeCl 2 (C 16 H 36 N 4 )][FeCl 4 ] or trans -[FeCl 2 ( meso -HMC)][FeCl 4 ] ( 2 ). Single-crystal X-ray diffraction studies revealed that both 1 and 2 adopt a pseudo-octahedral geometry, where the macrocycles adopt folded and planar geometries, respectively. The chloride ligands in 1 are cis to each other,more »while those in 2 have a trans configuration. The relevant bond angles in 1 deviate substantially from an ideal octahedral coordination geometry, with the angles between the cis substituents varying from 81.55 (5) to 107.56 (4)°, and those between the trans -ligating atoms varying from 157.76 (8) to 170.88 (3)°. In contrast, 2 adopts a less strained configuration, in which the N—Fe—N angles vary from 84.61 (8) to 95.39 (8)° and the N—Fe—Cl angles vary from 86.02 (5) to 93.98 (5)°.« less
  3. Four novel ternary phases have been prepared in the system Ca–Li–Sn using both the metal flux method and conventional high-temperature synthesis. Each of the obtained compositions represents its own (new) structure type, and the structures feature distinct polyanionic Sn units. Ca 4 LiSn 6 (space group Pbcm , Pearson symbol oP 44) accommodates infinite chains, made up of cyclopentane-like [Sn 5 ]-rings, which are bridged by Sn atoms. The Sn atoms in this structure are two- and three-bonded. The anionic substructure of Ca 9 Li 6+x Sn 13–x ( x ≈ 0.28, space group C 2/ m , Pearson symbolmore »mS 56) displays extensive mixing of Li and Sn and combination of single-bonded and hypervalent interactions between the Sn atoms. Hypervalent bonding is also pronounced in the structure of the third compound, Ca 2 LiSn 3 (space group Pmm 2, Pearson symbol oP 18) with quasi-two-dimensional polyanionic subunits and a variety of coordination environments of the Sn atoms. One-dimensional [Sn 10 ]-chains with an intricate topology of cis - and trans -Sn–Sn bonds exist in the structure of Ca 9–x Li 2 Sn 10 ( x ≈ 0.16, space group C 2/ m , Pearson symbol mS 42), and the Sn–Sn bonding in this case demonstrates the characteristics of an intermediate between single- and double- bond-order. The peculiarities of the bonding are discussed in the context of the Zintl approach, which captures the essence of the main chemical interactions. The electronic structures of all four compounds have also been analyzed in full detail using first-principles calculations.« less
  4. To ascertain the influence of binary ligand systems [1,1-dicyanoethylene-2,2-dithiolate (i-mnt −2 ) and polyamine {tetraen = tris(2-aminoethyl)amine, tren = diethylene triamine and opda = o -phenylenediamine}] on the coordination modes of the Ni( ii ) metal center and resulting supramolecular architectures, a series of nickel( ii ) thiolate complexes [Ni(tetraen)(i-mnt)](DMSO) ( 1 ), [Ni 2 (tren) 2 (i-mnt) 2 ] ( 2 ), and [Ni 2 (i-mnt) 2 (opda) 2 ] n ( 3 ) have been synthesized in high yield in one step in water and structurally characterized by single crystal X-ray crystallography and spectroscopic techniques. X-ray diffraction studiesmore »disclose the diverse i-mnt −2 coordination to the Ni +2 center in the presence of active polyamine ligands, forming a slightly distorted octahedral geometry (NiN 4 S 2 ) in 1 , square planar (NiS 4 ) and distorted octahedral geometries (NiN 6 ) in the bimetallic co-crystallized aggregate of cationic [Ni(tren) 2 ] +2 and anionic [Ni(i-mnt) 2 ] −2 in 2 , and a one dimensional (1D) polymeric chain along the [100] axis in 3 , having consecutive square planar (NiS 4 ) and octahedral (NiN 6 ) coordination kernels. The N–H⋯O, N–H⋯S, N–H⋯N, N–H⋯S, N–H⋯N, and N–H⋯O type hydrogen bonds stabilize the supramolecular assemblies in 1 , 2 , and 3 respectively imparting interesting graph-set-motifs. The molecular Hirshfeld surface analyses (HS) and 2D fingerprint plots were utilized for decoding all types of non-covalent contacts in the crystal networks. Atomic HS analysis of the Ni +2 centers reveals significant Ni–N metal–ligand interactions compared to Ni–S interactions. We have also studied the unorthodox interactions observed in the solid state structures of 1–3 by QTAIM and NBO analyses. Moreover, all the complexes proved to be highly active water reduction co-catalysts (WRC) in a photo-catalytic hydrogen evolution process involving iridium photosensitizers, wherein 2 and 3 having a square planar arrangement around the nickel center(s) – were found to be the most active ones, achieving 1000 and 1119 turnover numbers (TON), respectively.« less
  5. Electron transfer (ET) in donor–bridge–acceptor (DBA) compounds depends strongly on the structural and electronic properties of the bridge. Among the bridges that support donor–acceptor conjugation, alkyne bridges have attractive and unique properties: they are compact, possess linear structure permitting access to high symmetry DBA molecules, and allow torsional motion of D and A, especially for longer bridges. We report conformation dependent electron transfer dynamics in a set of novel DBA compounds featuring butadiyne (C4) bridge, N -isopropyl-1,8-napthalimide (NAP) acceptors, and donors that span a range of reduction potentials (trimethyl silane (Si-C4-NAP), phenyl (Ph-C4-NAP), and dimethyl aniline (D-C4-NAP)). Transient mid-IR absorptionmore »spectra of the CC bridge stretching modes, transient spectra in the visible range, and TD-DFT calculations were used to decipher the ET mechanisms. We found that the electronic excited state energies and, especially, the transition dipoles (S 0 → S n ) depend strongly on the dihedral angle ( θ ) between D and A and the frontier orbital symmetry, offering an opportunity to photo-select particular excited states with specific ranges of dihedral angles by exciting at chosen wavelengths. For example, excitation of D-C4-NAP at 400 nm predominantly prepares an S 1 excited state in the planar conformations ( θ ∼ 0) but selects an S 2 state with θ ∼ 90°, indicating the dominant role of the molecular symmetry in the photophysics. Moreover, the symmetry of the frontier orbitals of such DBA compounds not only defines the photo-selection outcome, but also determines the rate of the S 2 → S 1 charge separation reaction. Unprecedented variation of the S 2 –S 1 electronic coupling with θ by over four orders of magnitude results in slow ET at θ ca. 0° and 90° but extremely fast ET at θ of 20–60°. The unique features of high-symmetry alkyne bridged DBA structures enable frequency dependent ET rate selection and make this family of compounds promising targets for the vibrational excitation control of ET kinetics.« less