skip to main content


Title: Quantifying the Impact of IDPs
To address the need for more structured, diverse, inclusive, equitable, holistic, and ongoing career planning, Individual Development Plans (IDPs) are used widely by academic institutions. Although IDPs have an enormous capacity to contribute to a wide scope of student outcomes including equitable training, mentorship, wellness, and career planning, assessment is complicated by the different IDP ideologies, frameworks, and tools that exist, as well as the different ways IDP creation process is facilitated. The goal of the NSF-funded Impact Indicators and Instruments for Individual Development Plans (I3IDP) project is to develop instruments to measure the outcomes and impact of IDPs on the development of graduate students in STEM. The development of these assessment instruments will facilitate the generation of comparable data within and across institutions to enhance the understanding of best practices in IDP use for PhD career planning. Of particular note is how IDPs may help lower the career and training barriers that exist for diverse and underrepresented groups. Partners behind this NSF funded project include GCC and creators from well-known IDP tools (myIDP.org, ChemIDP.org, ImaginePhD). In this interactive session we will present the indicators and outcomes of the IDP process as determined from stakeholder interviews and literature review, give participants a preview of the survey instruments, and discuss how IDP intervention can be used to provide more equitable training to graduate students and postdocs across multiple identity differences and intersectionality.  more » « less
Award ID(s):
1806607
NSF-PAR ID:
10287043
Author(s) / Creator(s):
Date Published:
Journal Name:
Graduate Career Consortium Annual Meeting
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Student reflections and using individual development plans (IDPs) for mentoring have been an integral part of an NSF S-STEM project focusing on students pursuing baccalaureate degrees in Engineering Technology (ET). The Engineering Technology Scholars – IMProving Retention and Student Success (ETS-IMPRESS) project provides financial support and offers students several high-impact curricular and co-curricular activities to increase the success of academically talented students. This interdisciplinary project brings together the Electrical Engineering Technology, and Computer Network and System Administration programs in the College of Computing and the College of Engineering’s Mechanical Engineering Technology program, with programs in the Pavlis Honors College, an inclusive and unique college designed around high-impact educational practices. An IDP is commonly used in business and industry to assist employees in meeting short- and long-term goals in their professional career. This tool has been adapted for use in the educational setting in a faculty mentoring capacity. The ET program advisors assign the freshman or transfer S-STEM student scholars with faculty mentors to match their area of research interest. The faculty mentors meet with the students a minimum of three to four times a year to review their IDP, make suggestions, and provide input for reaching their goals. The goals of the IDP process are to develop a deeper more meaningful relationship between the advisor and student, reflect and develop a strategy for the scholar’s educational and career success, and manage expectations and identify opportunities. In the initial meeting there are several prompts for the student to write about their goals, strengths, weaknesses and perceived challenges. In subsequent meetings the advisor and student revisit the IDP to discuss progress towards those goals. This study will describe some outcomes of the IDP process providing specific examples from each of the ET programs. Although it is difficult to measure the effect of these relationships, it is one of the high impact practices that have been noted as increasing student engagement and retention. The consequences of COVID-19 introducing a virtual environment to the IDP process will also be examined from the viewpoint of both student and advisor. An advantage of the IDP meetings for students is that advisors may provide personal business connections for internship opportunities and/or research projects that otherwise would not be discussed in a typical office hour or classroom session. One of the innovations of the ETS-IMPRESS program was requiring participation in the Honors Pathway Program, which generally emphasizes intrinsic motivation (and does not use GPA in admissions or awarding of credentials). The honors program consists of three seminar classes and four experiential components; for all of these, students write reflections designed to promote their development of self-authorship. Preliminary survey results show no difference between ETS and other honors students in the areas of student motivation, intention to persist, and professional skill development. ETS students see a closer link between their current major and their future career than non-ETS honors students. A comparative analysis of reflections will investigate students’ perceptions of the program’s effect. 
    more » « less
  2. The importance of diversifying the national STEM workforce is well-established in the literature (Marrongelle, 2018). This need extends to graduate education in the STEM fields, leading N.C. A&T to invest considerably in graduate education and wraparound support initiatives that help graduate students build science identity and competencies for careers both within and beyond academia. The NSF-funded Bridges to the Doctorate project will integrate culturally reflective mentoring and professional development specifically designed for Black, Latinx, and Native American Ph.D. students. This holistic, graduate student development model includes academic and professional skill-building for STEM careers alongside targeted support for pursuing fellowship opportunities. This paper discusses the planned mentoring approach for the aforementioned program and previous approaches to mentoring graduate students used at N.C. A&T. The BD Fellows program will support formal and informal mentoring relationships, as mentoring contributes towards retention in STEM graduate programs (Ragins, 2007). BD Fellows will participate in monthly one-hour seminars on how to identify, establish, and maintain informal mentoring relationships (Schwartz et al., 2018; Parnes et al., 2020), while STEM faculty will attend seminars on leveraging their social networks as vital sources of mentorship for the BD Fellows. Using a multi-pronged collaborative approach, this model integrates the evidence-based domains of self-efficacy (Laurencelle & Scanlan, 2018; Lent et al., 1994; Lent et al., 2008), science/research identity (Lent et al., 2015; Zimmerman, 2000), and social cognitive career theory (Lent et al., 2005; Lent and Brown, 2006) to recruit, enroll, and graduate LSAMP Fellows with STEM doctoral degrees. Guided by the theories, the following questions will be addressed: (1) To what extent is culturally reflective mentoring identified as a critical driver of B2D Fellows’ success? (2) To what extent are the program’s training components fostering increases in B2D Fellow’s self-efficacy, competency, and science identity? (3) What is the strength of the correlation between participation in the program training components, mentoring activities, and persistence in graduate school? (4) To what extent does the perceived importance of self-efficacy, competency, and science identity differ by race/ethnicity and gender? These data will be analyzed using both formative and summative assessments of program outcomes. Quantitative data will include pre-, post-, and exit surveys. Qualitative data will assess the impact of mentoring and program support. This study will be guided by established protocols that have been approved by the N.C. A&T IRB. It is anticipated that our BD Fellows program will significantly impact the retention and graduation rates of underrepresented minority STEM graduate students in our doctoral programs, thus producing a diverse workforce of STEM professionals. Materials from the program recruiting cycle, mentoring workshops, and the structured fellowship application process will be disseminated freely to other LSAMP and minority-serving institutions across the country. Strategies and outcomes of this project will be published in peer-reviewed journals and shared in conference proceedings. 
    more » « less
  3. Graduate training often takes a monodisciplinary approach that is not informed by best practices, ignores the needs and preferences of students, and overlooks the increasingly interdisciplinary and international nature of research. This is unfortunate, particularly since graduate education that is fully integrated with interdisciplinary research can help students become part of a trained and diverse workforce equipped to meet society’s many challenges. Against this backdrop, a National Science Foundation Research Traineeship (NRT) program is being established at the University of Kentucky leveraging the most effective instruments for the training of STEM professionals, such as network-based graduate student mentoring and career preparation encompassing both technical and professional skillsets. Briefly, the training graduate students will receive – in a way that is fully integrated with the research they perform – includes: 1) tools such as individual development plans and developmental network maps; 2) a multi-departmental and interdisciplinary course on research-related content; 3) a seminar course on transferrable skills (ethics, research, communication, teaching, mentoring, entrepreneurship, teamwork, management, leadership, outreach, etc.); 4) a certificate to be awarded once students complete the two courses above and garner additional credits from an interdisciplinary curriculum of research-related courses; 5) summer internships at other departments and at external institutions (other universities, industry, national laboratories) nationwide or abroad; 6) an annual research-related symposium including all elements of a scientific conference; 7) internal collaborative research grants for participants to fund and pursue their own ideas; 8) fields trips to facilities related to the research; and 9) coaching on job hunting as well as résumé, motivation letter and interview preparation. Since a workforce equipped to meet society’s challenges must be both well trained and diverse, multiple initiatives will ensure that this NRT will broaden participation in STEM. Recruitment-wise, close collaboration with a number of entities will provide this NRT with a broad recruitment pool of talented and diverse students. Moreover, collaboration with these entities will provide trainees with ample opportunities to acquire, practice and refine their professional skills, as trainees present their results and recruit in conferences, meetings and outreach events organized by these entities, become members and/or join their leadership, and expand their professional and mentoring network in the process. In addition, minority trainees will be surveyed periodically to probe their feelings of well-being, preparation, acceptance, belonging and distress, as well as their perception of how well structured their departments and programs are. According to recent literature, these factors determine whether or not they perform (i.e., publish) at rates comparable to their male majority peers. Saliently, the evaluation of the educational model employed will afford a comprehensive understanding not only of the academy components that were more utilized and impactful, but will reveal the individual mentoring and skill-building facets of the program driving its successful implementation. The evaluation plan includes outcomes, performance measures, an evaluation timetable, benchmarks and a description of how formative evaluation will improve practice, the evaluation process also extending to research activities. 
    more » « less
  4. null (Ed.)
    Individual Development Plans (IDPs) have been used to support the career and professional development of graduate students across disciplines. This interactive session focuses on how IDPs can help you build your skills, form your professional identity, and take control of your career through an iterative process of self‐assessment, career exploration, decision making and goal setting. To provide an introduction to the IDP process attendees will be able to take a self‐assessment to learn about their particular strengths and begin to target their strengths toward their professional goals. Additionally a co‐developer and researcher of IDP platforms will highlight the aspects that can help your IDP be more effective than others. 
    more » « less
  5. null (Ed.)
    The COVID-19 outbreak has severely affected graduate education in science, technology, engineering, and mathematics (STEM) fields. It disrupted the learning and career development including in-person laboratory research activities and mentoring meetings. Since early 2000s, STEM graduate schools have been promoting the use of individual development plans (IDPs), which provide formalized mentorship, to support graduate students' academic and career success. It is unclear whether and to what extent the IDPs play a role in promoting mentoring and career-relevant outcomes among students during the crisis. This study presents some of the first evidence on the interrelationships of IDP status, mentoring support and satisfaction, and career attitudes with a diverse nationwide sample of STEM graduate students during the COVID-19 pandemic. 
    more » « less