Accurate measurement of the Hubble constant from standard sirens such as the gravitational wave (GW) sources with electromagnetic counterparts relies on the robust peculiar velocity correction of the redshift of the host galaxy. We show in this work that the peculiar velocity of the host galaxies exhibits a correlation with the properties of the host galaxy primarily such as its stellar mass and this correlation also evolves with redshift. As the galaxies of higher stellar mass tend to form in galaxies with higher halo masses which are located in spatial regions having a non-linear fluctuation in the density field of the matter distribution, the root mean square peculiar velocity of more massive galaxies is higher. As a result, depending on the formation channel of the binary compact objects, the peculiar velocity contamination to the galaxies will be different. The variation in the peculiar velocity of the host galaxies can lead to a significant variation in the estimation of the Hubble constant inferred using sources such as binary neutron stars. For the network of GW detectors such as LIGO-Virgo-KAGRA (LVK), LVK+LIGO-India, and Cosmic Explorer + Einstein Telescope, the variation in the precision of Hubble constant inferred from 10 bright siren events can vary from $\sim 5.4 - 6~{{\ \rm per \, cent}}$, $\sim 4.5 - 5.3~{{\ \rm per \, cent}}$, and $\sim 1.1 - 2.7~{{\ \rm per \, cent}}$, respectively. The impact of such a correlation between peculiar velocity and stellar mass on the inference of the Hubble constant is not only limited to GW sources but also applicable to type-Ia supernovae.
- PAR ID:
- 10287446
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Date Published:
- Journal Name:
- Monthly Notices of the Royal Astronomical Society
- Volume:
- 498
- Issue:
- 3
- ISSN:
- 0035-8711
- Page Range / eLocation ID:
- 3241 to 3274
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
ABSTRACT -
The importance of alternative methods for measuring the Hubble constant, such as time-delay cosmography, is highlighted by the recent Hubble tension. It is paramount to thoroughly investigate and rule out systematic biases in all measurement methods before we can accept new physics as the source of this tension. In this study, we perform a check for systematic biases in the lens modelling procedure of time-delay cosmography by comparing independent and blind time-delay predictions of the system WGD 2038−4008 from two teams using two different software programs:
GLEE andLENSTRONOMY . The predicted time delays from the two teams incorporate the stellar kinematics of the deflector and the external convergence from line-of-sight structures. The un-blinded time-delay predictions from the two teams agree within 1.2σ , implying that once the time delay is measured the inferred Hubble constant will also be mutually consistent. However, there is a ∼4σ discrepancy between the power-law model slope and external shear, which is a significant discrepancy at the level of lens models before the stellar kinematics and the external convergence are incorporated. We identify the difference in the reconstructed point spread function (PSF) to be the source of this discrepancy. When the same reconstructed PSF was used by both teams, we achieved excellent agreement, within ∼0.6σ , indicating that potential systematics stemming from source reconstruction algorithms and investigator choices are well under control. We recommend that future studies supersample the PSF as needed and marginalize over multiple algorithms or realizations for the PSF reconstruction to mitigate the systematics associated with the PSF. A future study will measure the time delays of the system WGD 2038−4008 and infer the Hubble constant based on our mass models. -
ABSTRACT We present cosmological parameter constraints based on a joint modelling of galaxy–lensing cross-correlations and galaxy clustering measurements in the SDSS, marginalizing over small-scale modelling uncertainties using mock galaxy catalogues, without explicit modelling of galaxy bias. We show that our modelling method is robust to the impact of different choices for how galaxies occupy dark matter haloes and to the impact of baryonic physics (at the $\sim 2{{\ \rm per\ cent}}$ level in cosmological parameters) and test for the impact of covariance on the likelihood analysis and of the survey window function on the theory computations. Applying our results to the measurements using galaxy samples from BOSS and lensing measurements using shear from SDSS galaxies and CMB lensing from Planck, with conservative scale cuts, we obtain $S_8\equiv \left(\frac{\sigma _8}{0.8228}\right)^{0.8}\left(\frac{\Omega _\mathrm{ m}}{0.307}\right)^{0.6}=0.85\pm 0.05$ (stat.) using LOWZ × SDSS galaxy lensing, and S8 = 0.91 ± 0.1 (stat.) using combination of LOWZ and CMASS × Planck CMB lensing. We estimate the systematic uncertainty in the galaxy–galaxy lensing measurements to be $\sim 6{{\ \rm per\ cent}}$ (dominated by photometric redshift uncertainties) and in the galaxy–CMB lensing measurements to be $\sim 3{{\ \rm per\ cent}}$, from small-scale modelling uncertainties including baryonic physics.
-
ABSTRACT Strongly lensed quasars can provide measurements of the Hubble constant (H0) independent of any other methods. One of the key ingredients is exquisite high-resolution imaging data, such as Hubble Space Telescope (HST) imaging and adaptive-optics (AO) imaging from ground-based telescopes, which provide strong constraints on the mass distribution of the lensing galaxy. In this work, we expand on the previous analysis of three time-delay lenses with AO imaging (RX J1131−1231, HE 0435−1223, and PG 1115+080), and perform a joint analysis of J0924+0219 by using AO imaging from the Keck telescope, obtained as part of the Strong lensing at High Angular Resolution Program (SHARP) AO effort, with HST imaging to constrain the mass distribution of the lensing galaxy. Under the assumption of a flat Λ cold dark matter (ΛCDM) model with fixed Ωm = 0.3, we show that by marginalizing over two different kinds of mass models (power-law and composite models) and their transformed mass profiles via a mass-sheet transformation, we obtain $\Delta t_{\rm BA}=6.89\substack{+0.8\\-0.7}\, h^{-1}\hat{\sigma }_{v}^{2}$ d, $\Delta t_{\rm CA}=10.7\substack{+1.6\\-1.2}\, h^{-1}\hat{\sigma }_{v}^{2}$ d, and $\Delta t_{\rm DA}=7.70\substack{+1.0\\-0.9}\, h^{-1}\hat{\sigma }_{v}^{2}$ d, where $h=H_{0}/100\,\rm km\, s^{-1}\, Mpc^{-1}$ is the dimensionless Hubble constant and $\hat{\sigma }_{v}=\sigma ^{\rm ob}_{v}/(280\,\rm km\, s^{-1})$ is the scaled dimensionless velocity dispersion. Future measurements of time delays with 10 per cent uncertainty and velocity dispersion with 5 per cent uncertainty would yield a H0 constraint of ∼15 per cent precision.
-
ABSTRACT This work studies microlensing effects in strongly lensed gravitational wave (GW) signals corresponding to global minima images in galaxy-scale lenses. We find that stellar microlenses alone are unable to introduce noticeable wave effects in the global minima GW signals at strong lensing magnification $( {\mu})\lt 50$ with match value between unlensed and lensed GW signals being above ${\sim }99.5~{{\ \rm per \, cent}}$ in ${\sim }90~{{\ \rm per \, cent}}$ of systems implying that GW signals corresponding to global minima can be treated as reference signal to determine the amount of microlensing in other strongly lensed counterparts. Since the stellar microlenses introduce negligible wave effects in global minima, they can be used to probe the intermediate-mass black hole (IMBH) lenses in the galaxy lens. We show that the presence of an IMBH lens with mass in the range $[50,10^3]~{\rm M_\odot }$ such that the global minima lies within five Einstein radius of it, the microlensing effects at $f\lt 10^2$ Hz are mainly determined by the IMBH lens for ${\mu} \lt 50$. Assuming that a typical strong lensing magnification of 3.8 and high enough signal-to-noise ratio (in the range ${\simeq }[10, 30]$) to detect the microlensing effect in GW signals corresponding to global minima, with non-detection of IMBH-led microlensing effects in ${\simeq }15~({\simeq }150)$ lensed GW signals, we can rule out dark matter fraction $\gt 10~{{\ \rm per \, cent}}~(\gt 1~{{\ \rm per \, cent}})$ made of IMBH population inside galaxy lenses with mass values $\gt 150~{\rm M_\odot }$ with ${\sim }$90 per cent confidence. Although we have specifically used IMBHs as an example, the same analysis applies to any subhalo (or compact objects) with lensing masses (i.e. the total mass inside Einstein radius) satisfying the above criterion.