skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Attitude Pointing Control using Artificial Potentials with Control Input Constraints
This paper presents a novel approach for pointing direction control of a rigid body with a body-fixed sensor, in the presence of control constraints and pointing direction constraints. This scheme relies on the use of artificial potentials where an attractive artificial potential is placed at the desired pointing direction and a repulsive artificial potential is used to avoid an undesirable pointing direction. The proposed control law ensures almost global asymptotic convergence of the rigid body to its desired pointing direction, while satisfying the control input constraints and avoiding the undesirable pointing direction. These theoretical results are followed by numerical simulation results that provide an illustration of the scheme for a realistic spacecraft pointing control scenario.  more » « less
Award ID(s):
1938518
PAR ID:
10287480
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
2021 American Control Conference (ACC)
Page Range / eLocation ID:
1 to 6
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This paper addresses the problem of generating a position trajectory with pointing direction constraints at given waypoints for underactuated unmanned vehicles. The problem is initially posed on the configuration space ℝ 3 × ℝ 2 and thereafter, upon suitable modifications, is re-posed as a problem on the Lie group SE(3). This is done by determining a vector orthogonal to the pointing direction and using it as the vehicle's thrust direction. This translates to converting reduced attitude constraints to full attitude constraints at the waypoints. For the position trajectory, in addition to position constraints, this modification adds acceleration constraints at the waypoints. For real-time implementation with low computational expenses, a linear-quadratic regulator (LQR) approach is adopted to determine the position trajectory with smoothness upto the fourth time derivative of position (snap). For the attitude trajectory, the thrust direction extracted from the position trajectory is used to first propagate the attitude to the subsequent waypoint and then correct it over time to achieve the desired attitude at this waypoint. Finally, numerical simulation results are presented to validate the trajectory generation scheme. 
    more » « less
  2. A discrete time, optimal trajectory planning scheme for position trajectory generation of a vehicle is given here, considering the mission duration as a free variable. The vehicle is actuated in three rotational degrees of freedom and one translational degree of freedom. This model is applicable to vehicles that have a body-fixed thrust vector direction for translational motion control, including fixed-wing and rotorcraft unmanned aerial vehicles (UAVs), unmanned underwater vehicles (UUVs) and spacecraft. The lightweight scheme proposed here generates the trajectory in inertial coordinates, and is intended for real time, on-the-go applications. The unspecified terminal time can be considered as an additional design parameter. This is done by deriving the optimality conditions in a discrete time setting, which results in the discrete transversality condition. The trajectory starts from an initial position and reaches a desired final position in an unspecified final time that ensures the cost on state and control is optimized. The trajectory generated by this scheme can be considered as the desired trajectory for a tracking control scheme. Numerical simulation results validate the performance of this trajectory generation scheme used in conjunction with a nonlinear tracking control scheme. 
    more » « less
  3. Manzie, C (Ed.)
    The rigid body attitude stabilization problem with constrained control inputs has been studied by many researchers. However, if perfect eigen-axis rotation in rest to-rest maneuvers is also desirable, the control design problem becomes more challenging and, to the best of the authors’ knowledge, has not yet been addressed. In this letter, an anti-windup compensation approach to this problem is developed. A nonlinear dynamic inversion control is used to obtain satisfactory unconstrained performance and this is supplemented by an anti-windup compensator when constraints are encountered. The compensator provides global L2 performance under reasonable conditions. A highlight of the approach is that the anti-windup compensator can have a nonlinear structure, giving flexibility in the choice of its parameters. Simulation results demonstrate the effectiveness of the proposed scheme as well as the performance improvement achieved using a compensator with state-dependent parameters. 
    more » « less
  4. The rigid body attitude estimation problem is treated using the discrete-time Lagrange-d'Alembert principle. Three different possibilities are considered for the multi-rate relation between angular velocity measurements and direction vector measurements for attitude: 1) integer relation between sampling rates, 2) time-varying sampling rates, 3) non-integer relation between sampling rates. In all cases, it is assumed that angular velocity measurements are sampled at a higher rate compared to the inertial vectors. The attitude determination problem from two or more vector measurements in the body-fixed frame is formulated as Wahba's problem. At instants when direction vector measurements are absent, a discrete-time model for attitude kinematics is used to propagate past measurements. A discrete-time Lagrangian is constructed as the difference between a kinetic energy-like term that is quadratic in the angular velocity estimation error and an artificial potential energy-like term obtained from Wahba's cost function. An additional dissipation term is introduced and the discrete-time Lagrange-d'Alembert principle is applied to the Lagrangian with this dissipation to obtain an optimal filtering scheme. A discrete-time Lyapunov analysis is carried out to show that the optimal filtering scheme is asymptotically stable in the absence of measurement noise and the domain of convergence is almost global. For a realistic evaluation of the scheme, numerical experiments are conducted with inputs corrupted by bounded measurement noise. These numerical simulations exhibit convergence of the estimated states to a bounded neighborhood of the actual states. 
    more » « less
  5. This article presents an attitude tracking control scheme with Hölder continuity and finite-time stability. The first part of this article discusses and compares the features of first-order multivariable Hölder-continuous systems with coupled-scalar sliding-mode systems. The advantages of Hölder-continuous systems over sliding-mode systems are presented from the perspectives of control continuity and noise robustness. Thereafter, a Hölder-continuous second-order differentiator is presented with its stability and robustness properties. This is followed by its use in an attitude tracking control scheme, which is covered in the second part of the article. The proposed tracking control scheme is designed directly on the state-space of rigid-body rotational motion, which is the tangent bundle of the Lie group of 3D rotations. The control scheme design, its stability, and its robustness properties are obtained through Lyapunov stability analyses. The proposed Hölder-continuous design is compared with three comparable sliding-mode designs. Numerical simulations on a simulated CubeSat demonstrate the performance of the proposed control scheme and compare it with the sliding-mode control schemes. The numerical simulations also compare the proposed control scheme with other state-of-the-art sliding-mode control approaches in existing research publications. The comparison results demonstrate that the proposed Hölder-continuous attitude control scheme exhibits lower control efforts and tracking control errors over these sliding-mode control schemes in simulations that incorporate actuator dynamics and measurement uncertainties. 
    more » « less