We show that all versions of Heegaard Floer homology, link Floer homology, and sutured Floer homology are natural. That is, they assign concrete groups to each based 3-manifold, based link, and balanced sutured manifold, respectively. Furthermore, we functorially assign isomorphisms to (based) diffeomorphisms, and show that this assignment is isotopy invariant. The proof relies on finding a simple generating set for the fundamental group of the “space of Heegaard diagrams,” and then showing that Heegaard Floer homology has no monodromy around these generators. In fact, this allows us to give sufficient conditions for an arbitrary invariant of multi-pointed Heegaard diagrams to descend to a natural invariant of 3-manifolds, links, or sutured manifolds.
more »
« less
Monopole Floer Homology, Eigenform Multiplicities, and the Seifert–Weber Dodecahedral Space
Abstract We show that the Seifert–Weber dodecahedral space $\textsf{SW}$ is a monopole Floer homology $L$-space. The proof relies on our approach to study Floer homology using hyperbolic geometry. Although $\textsf{SW}$ is significantly larger than previous manifolds studied with this technique, we overcome computational complexity issues inherent to our method by exploiting the many symmetries of $\textsf{SW}$. In particular, we prove that small eigenvalues on coexact $1$-forms on $\textsf{SW}$ have large multiplicity.
more »
« less
- Award ID(s):
- 1948820
- NSF-PAR ID:
- 10287487
- Date Published:
- Journal Name:
- International Mathematics Research Notices
- ISSN:
- 1073-7928
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Abstract We show that the integer homology sphere obtained by splicing two nontrivial knot complements in integer homology sphere L-spaces has Heegaard Floer homology of rank strictly greater than one. In particular, splicing the complements of nontrivial knots in the 3-sphere never produces an L-space. The proof uses bordered Floer homology.more » « less
-
Abstract We describe a relationship between the monopole Floer homology of three‐manifolds and the geometry of Riemann surfaces. For an automorphism of a compact Riemann surface with quotient , there is a natural correspondence between theta characteristics on which are invariant under and self‐conjugate structures on the mapping torus of . We show that the monopole Floer homology groups of are explicitly determined by the eigenvalues of the (lift of the) action of on , the space of holomorphic sections of , and discuss several consequences of this description. Our result is based on a detailed analysis of the transversality properties of the Seiberg–Witten equations for suitable small perturbations.
-
Gay, David ; Wu, Weiwei (Ed.)We give new obstructions to the module structures arising in Heegaard Floer homology. As a corollary, we characterize the possible modules arising as the Heegaard Floer homology of an integer homology sphere with one-dimensional reduced Floer homology. Up to absolute grading shifts, there are only two. We use this corollary to show that the chain complex depicted by Ozsváth, Stipsicz, and Szabó to argue that there is no algebraic obstruction to the existence of knots with trivial epsilon invariant and non-trivial upsilon invariant cannot be realized as the knot Floer complex of a knot.more » « less
-
We use Heegaard Floer homology to define an invariant of homology cobordism. This invariant is isomorphic to a summand of the reduced Heegaard Floer homology of a rational homology sphere equipped with a spin structure and is analogous to Stoffregen’s connected Seiberg–Witten Floer homology. We use this invariant to study the structure of the homology cobordism group and, along the way, compute the involutive correction terms $\bar{d}$ and $\text{}\underline{d}$ for certain families of three-manifolds.more » « less