Abstract We give an operadic definition of a genuine symmetric monoidal $$G$$-category, and we prove that its classifying space is a genuine $$E_\infty $$G$-space. We do this by developing some very general categorical coherence theory. We combine results of Corner and Gurski, Power and Lack to develop a strictification theory for pseudoalgebras over operads and monads. It specializes to strictify genuine symmetric monoidal $$G$$-categories to genuine permutative $$G$$-categories. All of our work takes place in a general internal categorical framework that has many quite different specializations. When $$G$$ is a finite group, the theory here combines with previous work to generalize equivariant infinite loop space theory from strict space level input to considerably more general category level input. It takes genuine symmetric monoidal $$G$$-categories as input to an equivariant infinite loop space machine that gives genuine $$\Omega $$-$$G$-spectra as output.
more »
« less
∞-Operads as Analytic Monads
Abstract We develop an $$\infty $$-categorical version of the classical theory of polynomial and analytic functors, initial algebras, and free monads. Using this machinery, we provide a new model for $$\infty $$-operads, namely $$\infty $$-operads as analytic monads. We justify this definition by proving that the $$\infty $$-category of analytic monads is equivalent to that of dendroidal Segal spaces, known to be equivalent to the other existing models for $$\infty $$-operads.
more »
« less
- Award ID(s):
- 1714273
- PAR ID:
- 10287497
- Date Published:
- Journal Name:
- International Mathematics Research Notices
- ISSN:
- 1073-7928
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We provide a general recursive method for constructing transfer systems on finite lattices. Using this, we calculate the number of homotopically distinct $$N_{\infty} $$ operads for dihedral groups $$D_{p^n}$$, p>2 prime, and cyclic groups $$C_{qp^n}$$, $$p \neq q$$ prime. We then further display some of the beautiful combinatorics obtained by restricting to certain homotopically meaningful $$N_\infty$$ operads for these groups.more » « less
-
Abstract We initiate the study of model structures on (categories induced by) lattice posets, a subject we dub homotopical combinatorics . In the case of a finite total order [ n ], we enumerate all model structures, exhibiting a rich combinatorial structure encoded by Shapiro’s Catalan triangle. This is an application of previous work of the authors on the theory of $$N_\infty $$ N ∞ -operads for cyclic groups of prime power order, along with new structural insights concerning extending choices of certain model structures on subcategories of [ n ].more » « less
-
We present an elementary proof of a well-known theorem of Cheeger which states that if a metric-measure space \(X\) supports a \(p\)-Poincaré inequality, then the \(N^{1,p}(X)\) Sobolev space is reflexive and separable whenever \(p\in (1,\infty)\). We also prove separability of the space when \(p=1\). Our proof is based on a straightforward construction of an equivalent norm on \(N^{1,p}(X)\), \(p\in [1,\infty)\), that is uniformly convex when \(p\in (1,\infty)\). Finally, we explicitly construct a functional that is pointwise comparable to the minimal \(p\)-weak upper gradient, when \(p\in (1,\infty)\).more » « less
-
Abstract Recent works at the interface of algebraic combinatorics, algebraic geometry, number theory and topology have provided new integer-valued invariants on integer partitions. It is natural to consider the distribution of partitions when sorted by these invariants in congruence classes. We consider the prominent situations that arise from extensions of the Nekrasov–Okounkov hook product formula and from Betti numbers of various Hilbert schemes of n points on $${\mathbb {C}}^2$$ . For the Hilbert schemes, we prove that homology is equidistributed as $$n\to \infty $$ . For t -hooks, we prove distributions that are often not equidistributed. The cases where $$t\in \{2, 3\}$$ stand out, as there are congruence classes where such counts are zero. To obtain these distributions, we obtain analytic results of independent interest. We determine the asymptotics, near roots of unity, of the ubiquitous infinite products $$ \begin{align*}F_1(\xi; q):=\prod_{n=1}^{\infty}\left(1-\xi q^n\right), \ \ \ F_2(\xi; q):=\prod_{n=1}^{\infty}\left(1-(\xi q)^n\right) \ \ \ {\mathrm{and}}\ \ \ F_3(\xi; q):=\prod_{n=1}^{\infty}\left(1-\xi^{-1}(\xi q)^n\right). \end{align*} $$more » « less
An official website of the United States government

