skip to main content


Title: Mesoscale Temporal Wind Variability Biases Global Air–Sea Gas Transfer Velocity of CO2 and Other Slightly Soluble Gases
The significance of the water-side gas transfer velocity for air–sea CO2 gas exchange (k) and its non-linear dependence on wind speed (U) is well accepted. What remains a subject of inquiry are biases associated with the form of the non-linear relation linking k to U (hereafter labeled as f(U), where f(.) stands for an arbitrary function of U), the distributional properties of U (treated as a random variable) along with other external factors influencing k, and the time-averaging period used to determine k from U. To address the latter issue, a Taylor series expansion is applied to separate f(U) into a term derived from time-averaging wind speed (labeled as ⟨U⟩, where ⟨.⟩ indicates averaging over a monthly time scale) as currently employed in climate models and additive bias corrections that vary with the statistics of U. The method was explored for nine widely used f(U) parameterizations based on remotely-sensed 6-hourly global wind products at 10 m above the sea-surface. The bias in k of monthly estimates compared to the reference 6-hourly product was shown to be mainly associated with wind variability captured by the standard deviation σσU around ⟨U⟩ or, more preferably, a dimensionless coefficient of variation Iu= σσU/⟨U⟩. The proposed correction outperforms previous methodologies that adjusted k when using ⟨U⟩ only. An unexpected outcome was that upon setting Iu2 = 0.15 to correct biases when using monthly wind speed averages, the new model produced superior results at the global and regional scale compared to prior correction methodologies. Finally, an equation relating Iu2 to the time-averaging interval (spanning from 6 h to a month) is presented to enable other sub-monthly averaging periods to be used. While the focus here is on CO2, the theoretical tactic employed can be applied to other slightly soluble gases. As monthly and climatological wind data are often used in climate models for gas transfer estimates, the proposed approach provides a robust scheme that can be readily implemented in current climate models.  more » « less
Award ID(s):
2028633 1644382 1754893
NSF-PAR ID:
10287498
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Remote Sensing
Volume:
13
Issue:
7
ISSN:
2072-4292
Page Range / eLocation ID:
1328
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Measurements of turbulence, as rate of dissipation of turbulent kinetic energy (ε), adjacent to the air-water interface are rare but essential for understanding of gas transfer velocities (k) used to compute fluxes of greenhouse gases. Variability in ε is expected over diel cycles of stratification and mixing. Monin-Obukhov similarity theory (MOST) predicts an enhancement in ε during heating (buoyancy flux, β+) relative to that for shear (u*w 3/κz where u*w is water friction velocity, κ is von Karman constant, z is depth). To verify and expand predictions, we quantified ε in the upper 0.25 m and below from profiles of temperature-gradient microstructure in combination with time series meteorology and temperature in a tropical reservoir for winds <4 m s−1. Maximum likelihood estimates of near-surface ε during heating were independent of wind speed and high, ∼5 × 10−6 m2 s−3, up to three orders of magnitude higher than predictions from u*w 3/κz, increased with heating, and were ∼10 times higher than during cooling. k, estimated using near-surface ε, was ∼10 cm hr−1, validated with k obtained from chamber measurements, and 2–5 times higher than computed from wind-based models. The flux Richardson number (Rf) varied from ∼0.4 to ∼0.001 with a median value of 0.04 in the upper 0.25 m, less than the critical value of 0.2. We extend MOST by incorporating the variability in Rf when scaling the influence of β+ relative to u*w 3/κz in estimates of ε, and by extension, k, obtained from time series meteorological and temperature data. 
    more » « less
  2. This dataset contains three netcdf files that pertain to monthly, seasonal, and annual fields of surface wind stress, wind stress curl, and curl-derived upwelling velocities over the Northwest Atlantic (80-45W, 30-45N) covering a forty year period from 1980 to 2019. Six-hourly surface (10 m) wind speed components from the Japanese 55-year reanalysis (JRA-55; Kobayashi et al., 2015) were processed from 1980 to 2019 over a larger North Atlantic domain of 100W to 10E and 10N to 80N. Wind stress was computed using a modified step-wise formulation, originally based on (Gill, 1982) and a non-linear drag coefficient (Large and Pond, 1981), and later modified for low speeds (Trenberth et al., 1989). See Gifford (2023) for more details.   

    After the six-hourly zonal and meridional wind stresses were calculated, the zonal change in meridional stress (curlx) and the negative meridional change in zonal stress (curly) were found using NumPy’s gradient function in Python (Harris et al., 2020) over the larger North Atlantic domain (100W-10E, 10-80N). The curl (curlx + curly) over the study domain (80-45W, 10-80N) is then extracted, which maintain a constant order of computational accuracy in the interior and along the boundaries for the smaller domain in a centered-difference gradient calculation. 

    The monthly averages of the 6-hour daily stresses and curls were then computed using the command line suite climate data operators (CDO, Schulzweida, 2022) monmean function. The seasonal (3-month average) and annual averages (12-month average) were calculated in Python using the monthly fields with NumPy (NumPy, Harris et al., 2020). 

    Corresponding upwelling velocities at different time-scales were obtained from the respective curl fields and zonal wind stress by using the Ekman pumping equation of the study by Risien and Chelton (2008; page 2393). Please see Gifford (2023) for more details.   

    The files each contain nine variables that include longitude, latitude, time, zonal wind stress, meridional wind stress, zonal change in meridional wind stress (curlx), the negative meridional change in zonal wind stress (curly), total curl, and upwelling. Units of time begin in 1980 and are months, seasons (JFM etc.), and years to 2019. The longitude variable extends from 80W to 45W and latitude is 30N to 45N with uniform 1.25 degree resolution.  

    Units of stress are in Pascals, units of curl are in Pascals per meter, and upwelling velocity is described by centimeters per day. The spatial grid is a 29 x 13 longitude x latitude array. 

    Filenames: 

    monthly_windstress_wsc_upwelling.nc: 480 time steps from 80W to 45W and 30N to 45N.

    seasonal_windstress_wsc_upwelling.nc: 160 time steps from 80W to 45W and 30N to 45N.

    annual_windstress_wsc_upwelling.nc: 40 time steps from 80W to 45W and 30N to 45N.

    Please contact igifford@earth.miami.edu for any queries. {"references": ["Gifford, I.H., 2023. The Synchronicity of the Gulf Stream Free Jet and the Wind Induced Cyclonic Vorticity Pool. MS Thesis, University of Massachusetts Dartmouth. 75pp.", "Gill, A. E. (1982). Atmosphere-ocean dynamics (Vol. 30). Academic Press.", "Harris, C.R., Millman, K.J., van der Walt, S.J. et al. Array programming with NumPy. Nature 585, 357\u2013362 (2020). DOI: 10.1038/s41586-020-2649-2.", "Japan Meteorological Agency/Japan (2013), JRA-55: Japanese 55-year Reanalysis, Daily 3-Hourly and 6-Hourly Data, https://doi.org/10.5065/D6HH6H41, Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory, Boulder, Colo. (Updated monthly.)", "Kobayashi, S., Ota, Y., Harada, Y., Ebita, A., Moriya, M., Onoda, H., Onogi, K., Kamahori, H., Kobayashi, C., Endo, H. and Miyaoka, K., 2015. The JRA-55 reanalysis: General specifications and basic characteristics.\u202fJournal of the Meteorological Society of Japan. Ser. II,\u202f93(1), pp.5-48.", "Large, W.G. and Pond, S., 1981. Open ocean momentum flux measurements in moderate to strong winds.\u202fJournal of physical oceanography,\u202f11(3), pp.324-336.", "Risien, C.M. and Chelton, D.B., 2008. A global climatology of surface wind and wind stress fields from eight years of QuikSCAT scatterometer data.\u202fJournal of Physical Oceanography,\u202f38(11), pp.2379-2413.", "Schulzweida, Uwe. (2022). CDO User Guide (2.1.0). Zenodo. https://doi.org/10.5281/zenodo.7112925.", "Trenberth, K.E., Large, W.G. and Olson, J.G., 1989. The effective drag coefficient for evaluating wind stress over the oceans.\u202fJournal of Climate,\u202f2(12), pp.1507-1516."]} 
    more » « less
  3. Abstract. Systematic biases and coarse resolutions are major limitations ofcurrent precipitation datasets. Many deep learning (DL)-based studies havebeen conducted for precipitation bias correction and downscaling. However,it is still challenging for the current approaches to handle complexfeatures of hourly precipitation, resulting in the incapability ofreproducing small-scale features, such as extreme events. This studydeveloped a customized DL model by incorporating customized loss functions,multitask learning and physically relevant covariates to bias correct anddownscale hourly precipitation data. We designed six scenarios tosystematically evaluate the added values of weighted loss functions,multitask learning, and atmospheric covariates compared to the regular DLand statistical approaches. The models were trained and tested using theModern-era Retrospective Analysis for Research and Applications version 2(MERRA2) reanalysis and the Stage IV radar observations over the northerncoastal region of the Gulf of Mexico on an hourly time scale. We found thatall the scenarios with weighted loss functions performed notably better thanthe other scenarios with conventional loss functions and a quantilemapping-based approach at hourly, daily, and monthly time scales as well asextremes. Multitask learning showed improved performance on capturing finefeatures of extreme events and accounting for atmospheric covariates highlyimproved model performance at hourly and aggregated time scales, while theimprovement is not as large as from weighted loss functions. We show thatthe customized DL model can better downscale and bias correct hourlyprecipitation datasets and provide improved precipitation estimates at finespatial and temporal resolutions where regular DL and statistical methodsexperience challenges. 
    more » « less
  4. Accurate multidecadal radiative flux records are vital to understand Arctic amplification and constrain climate model uncertainties. Uncertainty in the NASA Clouds and the Earth’s Radiant Energy System (CERES)-derived irradiances is larger over sea ice than any other surface type and comes from several sources. The year-long Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition in the central Arctic provides a rare opportunity to explore uncertainty in CERES-derived radiative fluxes. First, a systematic and statistically robust assessment of surface shortwave and longwave fluxes was conducted using in situ measurements from MOSAiC flux stations. The CERES Synoptic 1degree (SYN1deg) product overestimates the downwelling shortwave flux by +11.40 Wm–2 and underestimates the upwelling shortwave flux by –15.70 Wm–2 and downwelling longwave fluxes by –12.58 Wm–2 at the surface during summer. In addition, large differences are found in the upwelling longwave flux when the surface approaches the melting point (approximately 0°C). The biases in downwelling shortwave and longwave fluxes suggest that the atmosphere represented in CERES is too optically thin. The large negative bias in upwelling shortwave flux can be attributed in large part to lower surface albedo (–0.15) in satellite footprint relative to surface sensors. Additionally, the results show that the spectral surface albedo used in SYN1deg overestimates albedo in visible and mid-infrared bands. A series of radiative transfer model perturbation experiments are performed to quantify the factors contributing to the differences. The CERES-MOSAiC broadband albedo differences (approximately 20 Wm–2) explain a larger portion of the upwelling shortwave flux difference than the spectral albedo shape differences (approximately 3 Wm–2). In addition, the differences between perturbation experiments using hourly and monthly MOSAiC surface albedo suggest that approximately 25% of the sea ice surface albedo variability is explained by factors not correlated with daily sea ice concentration variability. Biases in net shortwave and longwave flux can be reduced to less than half by adjusting both albedo and cloud inputs toward observed values. The results indicate that improvements in the surface albedo and cloud data would substantially reduce the uncertainty in the Arctic surface radiation budget derived from CERES data products. 
    more » « less
  5. Accurate characterization of precipitation P at subdaily temporal resolution is important for a wide range of hydrological applications, yet large-scale gridded observational datasets primarily contain daily total P. Unfortunately, a widely used deterministic approach that disaggregates P uniformly over the day grossly mischaracterizes the diurnal cycle of P, leading to potential biases in simulated runoff Q. Here we present Precipitation Isosceles Triangle (PITRI), a two-parameter deterministic approach in which the hourly hyetograph is modeled with an isosceles triangle with prescribed duration and time of peak intensity. Monthly duration and peak time were derived from meteorological observations at U.S. Climate Reference Network (USCRN) stations and extended across the United States, Mexico, and southern Canada at 6-km resolution via linear regression against historical climate statistics. Across the USCRN network (years 2000–13), simulations using the Variable Infiltration Capacity (VIC) model, driven by P disaggregated via PITRI, yielded nearly unbiased estimates of annual Q relative to simulations driven by observed P. In contrast, simulations using the uniform method had a Q bias of −11%, through overestimating canopy evaporation and underestimating throughfall. One limitation of the PITRI approach is a potential bias in snow accumulation when a high proportion of P falls on days with a mix of temperatures above and below freezing, for which the partitioning of P into rain and snow is sensitive to event timing within the diurnal cycle. Nevertheless, the good overall performance of PITRI suggests that a deterministic approach may be sufficiently accurate for large-scale hydrologic applications.

     
    more » « less