skip to main content

Title: Green Vegetation Cover Has Steadily Increased since Establishment of Community Forests in Western Chitwan, Nepal
Community forests have been established worldwide to sustainably manage forest ecosystem services while maintaining the livelihoods of local residents. The Chitwan National Park in Nepal is a world-renowned biodiversity hotspot, where community forests were consolidated in the park’s buffer zone after 1993. These western Chitwan community forests stand as the frontiers of human–environment interactions, nurturing endangered large mammal species while providing significant natural resources for local residents. Nevertheless, no systematic forest cover assessment has been conducted for these forests since their establishment. In this study, we examined the green vegetation dynamics of these community forests for the years 1988–2018 using Landsat surface reflectance products. Combining an automatic water extraction index, spectral mixture analysis and the normalized difference fraction index (NDFI), we developed water masks and quantified the water-adjusted green vegetation fractions and NDFI values in the forests. Results showed that all forests have been continuously greening up since their establishment, and the average green vegetation cover of all forests increased from approximately 30% in 1988 to above 70% in 2018. With possible contributions from the invasion of exotic understory plant species, we credit community forestry programs for some of the green-up signals. Monitoring of forest vegetation dynamics is critical for evaluating the effectiveness of community forestry as well as developing sustainable forest management policies. Our research will provide positive feedbacks to local community forest committees and users.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Remote Sensing
Page Range / eLocation ID:
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Improving high-resolution (meter-scale) mapping of snow-covered areas in complex and forested terrains is critical to understanding the responses of species and water systems to climate change. Commercial high-resolution imagery from Planet Labs, Inc. (Planet, San Francisco, CA, USA) can be used in environmental science, as it has both high spatial (0.7–3.0 m) and temporal (1–2 day) resolution. Deriving snow-covered areas from Planet imagery using traditional radiometric techniques have limitations due to the lack of a shortwave infrared band that is needed to fully exploit the difference in reflectance to discriminate between snow and clouds. However, recent work demonstrated that snow cover area (SCA) can be successfully mapped using only the PlanetScope 4-band (Red, Green, Blue and NIR) reflectance products and a machine learning (ML) approach based on convolutional neural networks (CNN). To evaluate how additional features improve the existing model performance, we: (1) build on previous work to augment a CNN model with additional input data including vegetation metrics (Normalized Difference Vegetation Index) and DEM-derived metrics (elevation, slope and aspect) to improve SCA mapping in forested and open terrain, (2) evaluate the model performance at two geographically diverse sites (Gunnison, Colorado, USA and Engadin, Switzerland), and (3) evaluate the model performance over different land-cover types. The best augmented model used the Normalized Difference Vegetation Index (NDVI) along with visible (red, green, and blue) and NIR bands, with an F-score of 0.89 (Gunnison) and 0.93 (Engadin) and was found to be 4% and 2% better than when using canopy height- and terrain-derived measures at Gunnison, respectively. The NDVI-based model improves not only upon the original band-only model’s ability to detect snow in forests, but also across other various land-cover types (gaps and canopy edges). We examined the model’s performance in forested areas using three forest canopy quantification metrics and found that augmented models can better identify snow in canopy edges and open areas but still underpredict snow cover under forest canopies. While the new features improve model performance over band-only options, the models still have challenges identifying the snow under trees in dense forests, with performance varying as a function of the geographic area. The improved high-resolution snow maps in forested environments can support studies involving climate change effects on mountain ecosystems and evaluations of hydrological impacts in snow-dominated river basins. 
    more » « less
  2. The Baltimore Ecosystem Study (BES) has established a network of long-term permanent biogeochemical study plots. These plots will provide long-term data on vegetation, soil and hydrologic processes in the key ecosystem types within the urban ecosystem. The current network of study plots includes eight forest plots, chosen to represent the range of forest conditions in the area, and four grass plots. These plots are complemented by a network of 200 less intensive study plots located across the Baltimore metropolitan area. Plots are currently instrumented with lysimeters (drainage and tension) to sample soil solution chemistry, time domain reflectometry probes to measure soil moisture, dataloggers to measure and record soil temperature and trace gas flux chambers to measure the flux of carbon dioxide, nitrous oxide and methane from soil to the atmosphere. Measurements of in situ nitrogen mineralization, nitrification and denitrification were made at approximately monthly intervals from Fall 1998 - Fall 2000. Detailed vegetation characterization (all layers) was done in summer 1998. Data from these plots has been published in Groffman et al. (2006, 2009) and Groffman and Pouyat (2009). In November of 1998 four rural, forested plots were established at Oregon Ridge Park in Baltimore County northeast of the Gwynns Falls Watershed. Oregon Ridge Park contains Pond Branch, the forested reference watershed for BES. Two of these four plots are located on the top of a slope; the other two are located midway up the slope. In June of 2010 measurements at the mid-slope sites on Pond Branch were discontinued. Monuments and equipment remain at the two plots. These plots were replaced with two lowland riparian plots; Oregon upper riparian and Oregon lower riparian. Each riparian sites has four 5 cm by 1-2.5 meter depth slotted wells laid perpendicular to the stream, four tension lysimeters at 10 cm depth, five time domain reflectometry probes, and four trace gas flux chambers in the two dominant microtopographic features of the riparian zones - high spots (hummocks) and low spots (hollows). Four urban, forested plots were established in November 1998, two at Leakin Park and two adjacent to Hillsdale Park in west Baltimore City in the Gwynns Falls. One of the plots in Hillsdale Park was abandoned in 2004 due to continued vandalism. In May 1999 two grass, lawn plots were established at McDonogh School in Baltimore County west of the city in the Gwynns Falls. One of these plots is an extremely low intensity management area (mowed once or twice a year) and one is in a low intensity management area (frequent mowing, no fertilizer or herbicide use). In 2009, the McDonogh plots were abandoned due to management changes at the school. Two grass lawn plots were established on the campus of the University of Maryland, Baltimore County (UMBC) in fall 2000. One of these plots is in a medium intensity management area (frequent mowing, moderate applications of fertilizer and herbicides) and one is in a high intensity management area (frequent mowing, high applications of fertilizer and herbicides). Literature Cited Bowden R, Steudler P, Melillo J and Aber J. 1990. Annual nitrous oxide fluxes from temperate forest soils in the northeastern United States. J. Geophys. Res.-Atmos. 95, 13997 14005. Driscoll CT, Fuller RD and Simone DM (1988) Longitudinal variations in trace metal concentrations in a northern forested ecosystem. J. Environ. Qual. 17: 101-107 Goldman, M. B., P. M. Groffman, R. V. Pouyat, M. J. McDonnell, and S. T. A. Pickett. 1995. CH4 uptake and N availability in forest soils along an urban to rural gradient. Soil Biology and Biochemistry 27:281-286. Groffman PM, Holland E, Myrold DD, Robertson GP and Zou X (1999) Denitrification. In: Robertson GP, Bledsoe CS, Coleman DC and Sollins P (Eds) Standard Soil Methods for Long Term Ecological Research. (pp 272-290). Oxford University Press, New York Groffman PM, Pouyat RV, Cadenasso ML, Zipperer WC, Szlavecz K, Yesilonis IC,. Band LE and Brush GS. 2006. Land use context and natural soil controls on plant community composition and soil nitrogen and carbon dynamics in urban and rural forests. Forest Ecology and Management 236:177-192. Groffman, P.M., C.O. Williams, R.V. Pouyat, L.E. Band and I.C. Yesilonis. 2009. Nitrate leaching and nitrous oxide flux in urban forests and grasslands. Journal of Environmental Quality 38:1848-1860. Groffman, P.M. and R.V. Pouyat. 2009. Methane uptake in urban forests and lawns. Environmental Science and Technology 43:5229-5235. DOI: 10.1021/es803720h. Holland EA, Boone R, Greenberg J, Groffman PM and Robertson GP (1999) Measurement of Soil CO2, N2O and CH4 exchange. In: Robertson GP, Bledsoe CS, Coleman DC and Sollins P (Eds) Standard Soil Methods for Long Term Ecological Research. (pp 258-271). Oxford University Press, New York Robertson GP, Wedin D, Groffman PM, Blair JM, Holland EA, Nadelhoffer KJ and. Harris D. 1999. Soil carbon and nitrogen availability: Nitrogen mineralization, nitrification and carbon turnover. In: Standard Soil Methods for Long Term Ecological Research (Robertson GP, Bledsoe CS, Coleman DC and Sollins P (Eds) Standard Soil Methods for Long Term Ecological Research. (pp 258-271). Oxford University Press, New York Savva, Y., K. Szlavecz, R. V. Pouyat, P. M. Groffman, and G. Heisler. 2010. Effects of land use and vegetation cover on soil temperature in an urban ecosystem. Soil Science Society of America Journal 74:469-480." 
    more » « less
  3. Introduction Integrated social and ecological processes shape urban plant communities, but the temporal dynamics and potential for change in these managed communities have rarely been explored. In residential yards, which cover about 40% of urban land area, individuals make decisions that control vegetation outcomes. These decisions may lead to relatively static plant composition and structure, as residents seek to expend little effort to maintain stable landscapes. Alternatively, residents may actively modify plant communities to meet their preferences or address perceived problems, or they may passively allow them to change. In this research, we ask, how and to what extent does residential yard vegetation change over time? Methods We conducted co-located ecological surveys of yards (in 2008, 2018, and 2019) and social surveys of residents (in 2018) in four diverse neighborhoods of Phoenix, Arizona. Results 94% of residents had made some changes to their front or back yards since moving in. On average, about 60% of woody vegetation per yard changed between 2008 and 2018, though the number of species present did not differ significantly. In comparison, about 30% of woody vegetation changed in native Sonoran Desert reference areas over 10 years. In yards, about 15% of woody vegetation changed on average in a single year, with up to 90% change in some yards. Greater turnover was observed for homes that were sold, indicating a “pulse” of management. Additionally, we observed greater vegetation turnover in the two older, lawn-dominated neighborhoods surveyed despite differences in neighborhood socioeconomic factors. Discussion These results indicate that residential plant communities are dynamic over time. Neighborhood age and other characteristics may be important drivers of change, while socioeconomic status neither promotes nor inhibits change at the neighborhood scale. Our findings highlight an opportunity for management interventions, wherein residents may be open to making conservation-friendly changes if they are already altering the composition of their yards. 
    more » « less
  4. Abstract

    International environmental initiatives, such as the Bonn Challenge and the UN Decade on Restoration, have prompted countries to put the management and restoration of forest landscapes at the center of their land use and climate policies. To support these goals, many governments are promoting forest landscape restoration and management through financial forestry incentives, a form of payment for ecosystem services. Since 1996, Guatemala has implemented a series of forestry incentives that promote active forest landscape restoration and management on private and communal lands. These programs have been widely hailed as a success with nearly 600 000 ha enrolled since 1998. However, there has been no systematic assessment of the effectiveness of these programs on preserving and restoring Guatemalan forests. This study evaluates the impacts of over 16 000 individual PES projects funded through two incentive programs using a synthetic control counterfactual. Overall, a program for smallholders resulted in lower rates of forest loss, while a program for industrial timber owners led to greater gains in forest cover. Across policies, we found dramatically higher forest cover increases from restoration projects (15% forest cover increase) compared to plantation and agroforestry projects (3%–6% increase in forest cover). Projects that protected natural forest also showed a 6% reduction in forest loss. We found forest cover increases to be under 10% of total enrolled area, although positive local spillovers suggest this is an underestimate. Restoration projects show the most promise at promoting forest landscape restoration, but these benefits need to be weighed against priorities like resilience and rural development, which may be better served by other projects.

    more » « less
  5. Abstract

    Patterns of seed dispersal and seed mortality influence the spatial structure of plant communities and the local coexistence of competing species. Most seeds are dispersed in proximity to the parent tree, where mortality is also expected to be the highest, because of competition with siblings or the attraction of natural enemies. Whereas distance‐dependent mortality in the seed‐to‐seedling transition was often observed in tropical forests, few studies have attempted to estimate the shape of the survival‐distance curves, which determines whether the peak of seedling establishment occurs away from the parent tree (Janzen–Connell pattern) or if the peak attenuates but remains at the parent location (Hubbell pattern). In this study, we inferred the probability density of seed dispersal and two stages of seedling establishment (new recruits, and seedlings 20 cm or taller) with distance for 24 tree species present in the 50‐ha Forest Dynamics Plot of Barro Colorado Island, Panama. Using data from seed traps, seedling survey quadrats, and tree‐census records spanning the 1988–2014 period, we fit hierarchical Bayesian models including parameters for tree fecundity, the shape of the dispersal kernel, and overdispersion of seed or seedling counts. We combined predictions from multiple dispersal kernels to obtain more robust inferences. We find that Hubbell patterns are the most common and Janzen–Connell patterns are very rare among those species; that distance‐dependent mortality may be stronger in the seed stage, in the early recruit stage, or comparable in both; and that species with larger seeds experience less overall mortality and less distance‐dependent mortality. Finally, we describe how this modeling approach could be extended at a community scale to include less abundant species.

    more » « less