skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM to 12:00 PM ET on Tuesday, March 25 due to maintenance. We apologize for the inconvenience.


Title: Using payment for ecosystem services to meet national reforestation commitments: impacts of 20+ years of forestry incentives in Guatemala
Abstract International environmental initiatives, such as the Bonn Challenge and the UN Decade on Restoration, have prompted countries to put the management and restoration of forest landscapes at the center of their land use and climate policies. To support these goals, many governments are promoting forest landscape restoration and management through financial forestry incentives, a form of payment for ecosystem services. Since 1996, Guatemala has implemented a series of forestry incentives that promote active forest landscape restoration and management on private and communal lands. These programs have been widely hailed as a success with nearly 600 000 ha enrolled since 1998. However, there has been no systematic assessment of the effectiveness of these programs on preserving and restoring Guatemalan forests. This study evaluates the impacts of over 16 000 individual PES projects funded through two incentive programs using a synthetic control counterfactual. Overall, a program for smallholders resulted in lower rates of forest loss, while a program for industrial timber owners led to greater gains in forest cover. Across policies, we found dramatically higher forest cover increases from restoration projects (15% forest cover increase) compared to plantation and agroforestry projects (3%–6% increase in forest cover). Projects that protected natural forest also showed a 6% reduction in forest loss. We found forest cover increases to be under 10% of total enrolled area, although positive local spillovers suggest this is an underestimate. Restoration projects show the most promise at promoting forest landscape restoration, but these benefits need to be weighed against priorities like resilience and rural development, which may be better served by other projects.  more » « less
Award ID(s):
2125913
PAR ID:
10465326
Author(s) / Creator(s):
; ;
Publisher / Repository:
IOP Publishing
Date Published:
Journal Name:
Environmental Research Letters
Volume:
18
Issue:
10
ISSN:
1748-9326
Page Range / eLocation ID:
Article No. 104030
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Community forests have been established worldwide to sustainably manage forest ecosystem services while maintaining the livelihoods of local residents. The Chitwan National Park in Nepal is a world-renowned biodiversity hotspot, where community forests were consolidated in the park’s buffer zone after 1993. These western Chitwan community forests stand as the frontiers of human–environment interactions, nurturing endangered large mammal species while providing significant natural resources for local residents. Nevertheless, no systematic forest cover assessment has been conducted for these forests since their establishment. In this study, we examined the green vegetation dynamics of these community forests for the years 1988–2018 using Landsat surface reflectance products. Combining an automatic water extraction index, spectral mixture analysis and the normalized difference fraction index (NDFI), we developed water masks and quantified the water-adjusted green vegetation fractions and NDFI values in the forests. Results showed that all forests have been continuously greening up since their establishment, and the average green vegetation cover of all forests increased from approximately 30% in 1988 to above 70% in 2018. With possible contributions from the invasion of exotic understory plant species, we credit community forestry programs for some of the green-up signals. Monitoring of forest vegetation dynamics is critical for evaluating the effectiveness of community forestry as well as developing sustainable forest management policies. Our research will provide positive feedbacks to local community forest committees and users. 
    more » « less
  2. Payments for ecosystem services (PES) are a conservation initiative that offer payments to people who own or manage lands that provide desired ecosystem services. Utilizing mixed methods, I examine how PES in the form of government‐issued forestry incentives interact with land tenure to affect carbon storage in Guatemala's Western Highlands. Land tenure is a larger determining factor for carbon storage than payments, as communal forests managed by Indigenous Maya K'iche' communities have significantly higher carbon stocks than private landholdings in these same communities. No statistically significant differences were found in carbon stocks between incentivized and non‐incentivized plots, and participants enrolled only a fraction of their land, likely prioritizing enrollment of degraded plots. These results indicate the importance of using both social and physical science methods to understand the physical outcomes and social context of forest management. I also reflect on why carbon storage is often prioritized, drawing on a critical physical geography framework to analyze carbon accounting methods. Measuring carbon storage gives us the tools to describe the success of communal forest management, yet I also caution relying on the quantification of ecosystem services as a method for landscape valuation and suggest avoiding prioritizing carbon storage and sequestration. 
    more » « less
  3. Abstract Reversing large-scale habitat degradation and deforestation goes beyond what can be achieved by site-level ecological restoration and a landscape ecology perspective is fundamental. Here we assess the relative importance of tree cover and its configuration on forest-dependent birds and late-successional tree seedlings in restoration sites in southern Costa Rica. The abundance and species richness of birds increased in landscapes with more corridors, higher tree cover, and lower levels of fragmentation, highlighting the importance of riparian corridors for connectivity, and continuous tree cover as suitable habitat. Landscape variables affected abundance and species richness of seedlings similarly, but effects were weaker, possibly because seedlings face establishment limitation in addition to dispersal limitation. Moreover, the scale of landscape effects on seedlings was small, likely because proximal individual trees can significantly influence recruitment in restoration plots. Results underscore the importance of incorporating landscape-level metrics to restoration projects, as knowing the extent, and how the landscape may affect restoration outcomes can help to infer what kind of species will arrive to restoration plots. 
    more » « less
  4. Novel climate and disturbance regimes in the 21st century threaten to increase the vulnerability of some western U.S. forests to loss of biomass and function. However, the timing and magnitude of forest vulnerabilities are uncertain and will be highly variable across the complex biophysical landscape of the region. Assessing future forest trajectories and potential management impacts under novel conditions requires place-specific and mechanistic model projections. Stakeholders in the high-carbon density forests of the northern U.S. Rocky Mountains (NRM) currently seek to understand and mitigate climate risks to these diverse conifer forests, which experienced profound 20th century disturbance from the 1910 “Big Burn” and timber harvest. Present forest management plan revisions consider approaches including increases in timber harvest that are intended to shift species compositions and increase forest stress tolerance. We utilize CLM-FATES, a dynamic vegetation model (DVM) coupled to an Earth Systems Model (ESM), to model shifting NRM forest carbon stocks and cover, production, and disturbance through 2100 under unprecedented climate and management. Across all 21st century scenarios, domain forest C-stocks and canopy cover face decline after 2090 due to the interaction of intermittent drought and fire mortality with declining Net Primary Production (NPP) and post-disturbance recovery. However, mid-century increases in forest vulnerability to fire and drought impacts are not consistently projected across climate models due to increases in precipitation that buffer warming impacts. Under all climate scenarios, increased harvest regimes diminish forest carbon stocks and increase period mortality over business-as-usual, despite some late-century reductions in forest stress. Results indicate that existing forest carbon stocks and functions are moderately persistent and that increased near-term removals may be mistimed for effectively increasing resilience. 
    more » « less
  5. Abstract In many regions of the world, forest management has reduced old forest and simplified forest structure and composition. We hypothesized that such forest degradation has resulted in long-term habitat loss for forest-associated bird species of eastern Canada (130,017 km 2 ) which, in turn, has caused bird-population declines. Despite little change in overall forest cover, we found substantial reductions in old forest as a result of frequent clear-cutting and a broad-scale transformation to intensified forestry. Back-cast species distribution models revealed that breeding habitat loss occurred for 66% of the 54 most common species from 1985 to 2020 and was strongly associated with reduction in old age classes. Using a long-term, independent dataset, we found that habitat amount predicted population size for 94% of species, and habitat loss was associated with population declines for old-forest species. Forest degradation may therefore be a primary cause of biodiversity decline in managed forest landscapes. 
    more » « less