skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Bulk reconstruction of metrics with a compact space asymptotically
A bstract Holographic duality implies that the geometric properties of the gravitational bulk theory should be encoded in the dual field theory. These naturally include the metric on dimensions that become compact near the conformal boundary, as is the case for any asymptotically locally AdS n × $$ \mathbbm{S} $$ S k spacetime. Almost all previous work on metric reconstruction ignores these dimensions and would thus at most apply to dimensionally-reduced metrics. In this work, we generalize the approach to bulk reconstruction using light-cone cuts and propose a prescription to obtain the full higher-dimensional metric of generic spacetimes up to an overall conformal factor. We first extend the definition of light-cone cuts to include information about the asymptotic compact dimensions, and show that the full conformal metric can be recovered from these extended cuts. We then give a prescription for obtaining these extended cuts from the dual field theory. The location of the usual cuts can still be obtained from bulk-point singularities of correlators, and the new information in the extended cut can be extracted by using appropriate combinations of operators dual to Kaluza-Klein modes of the higher-dimensional bulk fields.  more » « less
Award ID(s):
1801805
PAR ID:
10287902
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Journal of High Energy Physics
Volume:
2020
Issue:
8
ISSN:
1029-8479
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We propose a description of the gluon scattering amplitudes as the inverse Mellin transforms of the conformal correlators of light operators in two-dimensional Liouville theory tensored with WZW-like chiral currents on the celestial sphere. The dimensions of operators are Mellin dual to gluon light cone energies while their positions are determined by the gluon momentum directions. Tree-level approximation in Yang-Mills theory corresponds to the semiclassical limit of Liouville theory. By comparing subleading corrections, we find b^2=(8π^2)^{−1}b_0g^2(M), where b is the Liouville coupling constant, g(M) is the Yang Mills coupling at the renormalization scale M and b_0 is the one-loop coefficient of the Yang-Mills beta function. 
    more » « less
  2. A<sc>bstract</sc> By adapting previously known arguments concerning Ricci flow and thec-theorem, we give a direct proof that in a two-dimensional sigma-model with compact target space, scale invariance implies conformal invariance in perturbation theory. This argument, which applies to a general sigma-model constructed with a target space metric andB-field, is in accord with a more general proof in the literature that applies to arbitrary two-dimensional quantum field theories. Models with extended supersymmetry and aB-field are known to provide interesting test cases for the relation between scale invariance and conformal invariance in sigma-model perturbation theory. We give examples showing that in such models, the obstructions to conformal invariance suggested by general arguments can actually occur in models with target spaces that are not compact or complete. Thus compactness of the target space, or at least a suitable condition of completeness, is necessary as well as sufficient to ensure that scale invariance implies conformal invariance in models of this type. 
    more » « less
  3. Abstract For a given finite subsetSof a compact Riemannian manifold (M,g) whose Schouten curvature tensor belongs to a given cone, we establish a necessary and sufficient condition for the existence and uniqueness of a conformal metric onM\Ssuch that each point ofScorresponds to an asymptotically flat end and that the Schouten tensor of the conformal metric belongs to the boundary of the given cone. As a by‐product, we define a purely local notion of Ricci lower bounds for continuous metrics that are conformal to smooth metrics and prove a corresponding volume comparison theorem. © 2022 The Authors.Communications on Pure and Applied Mathematicspublished by Wiley Periodicals LLC. 
    more » « less
  4. A bstract We study which bulk couplings contribute to the S 3 free energy F ( $$ \mathfrak{m} $$ m ) of three-dimensional $$ \mathcal{N} $$ N = 2 superconformal field theories with holographic duals, potentially deformed by boundary real-mass parameters m. In particular, we show that F ( $$ \mathfrak{m} $$ m ) is independent of a large class of bulk couplings that include non-chiral F-terms and all D-terms. On the other hand, in general, F ( $$ \mathfrak{m} $$ m ) does depend non-trivially on bulk chiral F-terms, such as prepotential interactions, and on bulk real-mass terms. These conclusions can be reached solely from properties of the AdS super-algebra, $$ \mathfrak{osp} $$ osp (2|4). We also consider massive vector multiplets in AdS, which in the dual field theory correspond to long single-trace superconformal multiplets of spin zero. We provide evidence that F ( $$ \mathfrak{m} $$ m ) is insensitive to the vector multiplet mass and to the interaction couplings between the massive vector multiplet and massless ones. In particular, this implies that F ( $$ \mathfrak{m} $$ m ) does not contain information about scaling dimensions or OPE coefficients of single-trace long scalar $$ \mathcal{N} $$ N = 2 superconformal multiplets. 
    more » « less
  5. A bstract We formulate a series of conjectures relating the geometry of conformal manifolds to the spectrum of local operators in conformal field theories in d > 2 spacetime dimensions. We focus on conformal manifolds with limiting points at infinite distance with respect to the Zamolodchikov metric. Our central conjecture is that all theories at infinite distance possess an emergent higher-spin symmetry, generated by an infinite tower of currents whose anomalous dimensions vanish exponentially in the distance. Stated geometrically, the diameter of a non-compact conformal manifold must diverge logarithmically in the higher-spin gap. In the holographic context our conjectures are related to the Distance Conjecture in the swampland program. Interpreted gravitationally, they imply that approaching infinite distance in moduli space at fixed AdS radius, a tower of higher-spin fields becomes massless at an exponential rate that is bounded from below in Planck units. We discuss further implications for conformal manifolds of superconformal field theories in three and four dimensions. 
    more » « less