- Award ID(s):
- 1744213
- Publication Date:
- NSF-PAR ID:
- 10288186
- Journal Name:
- Science
- Volume:
- 369
- Issue:
- 6501
- Page Range or eLocation-ID:
- 292 to 297
- ISSN:
- 0036-8075
- Sponsoring Org:
- National Science Foundation
More Like this
-
High-performance piezoelectrics benefit transducers and sensors in a variety of electromechanical applications.The materials with the highest piezoelectric chargecoefficients (d33) are relaxor-PbTiO3 crystals, which were discovered two decades ago. We successfully grew Sm-doped Pb(Mg1/3Nb2/3)O3-PbTiO3 (Sm-PMN-PT) single crystals with even higher d33 values ranging from 3400 to 4100 picocoulombs per newton, with variation below 20%over the as-grown crystal boule, exhibiting good property uniformity. We characterized the Sm-PMN-PTon the atomic scale with scanning transmission electron microscopy and made first-principles calculations to determine that the giant piezoelectric properties arise fromthe enhanced local structural heterogeneity introduced by Sm3+ dopants. Rare-earth doping is thus identified as a general strategy for introducing local structural heterogeneity in order to enhance the piezoelectricity of relaxor ferroelectric crystals.
-
Abstract Electromechanical coupling factor,
k , of piezoelectric materials determines the conversion efficiency of mechanical to electrical energy or electrical to mechanical energy. Here, we provide an fundamental approach to design piezoelectric materials that provide near-ideal magnitude ofk , via exploiting the electrocrystalline anisotropy through fabrication of grain-oriented or textured ceramics. Coupled phase field simulation and experimental investigation on <001> textured Pb(Mg1/3Nb2/3)O3-Pb(Zr,Ti)O3ceramics illustrate thatk can reach same magnitude as that for a single crystal, far beyond the average value of traditional ceramics. To provide atomistic-scale understanding of our approach, we employ a theoretical model to determine the physical origin ofk in perovskite ferroelectrics and find that strong covalent bonding between B-site cation and oxygen viad -p hybridization contributes most towards the magnitude ofk . This demonstration of near-idealk value in textured ceramics will have tremendous impact on design of ultra-wide bandwidth, high efficiency, high power density, and high stability piezoelectric devices. -
Metal halide perovskite nanocrystals (NCs) have emerged as new-generation light-emitting materials with narrow emissions and high photoluminescence quantum efficiencies (PLQEs). Various types of perovskite NCs, e.g., platelets, wires, and cubes, have been discovered to exhibit tunable emissions across the whole visible spectrum. Despite remarkable advances in the field of perovskite NCs, many nanostructures in inorganic NCs have not yet been realized in metal halide perovskites, and producing highly efficient blue-emitting perovskite NCs remains challenging and of great interest. Here, we report the discovery of highly efficient blue-emitting cesium lead bromide (CsPbBr 3 ) perovskite hollow NCs. By facile solution processing of CsPbBr 3 precursor solution containing ethylenediammonium bromide and sodium bromide, in situ formation of hollow CsPbBr 3 NCs with controlled particle and pore sizes is realized. Synthetic control of hollow nanostructures with quantum confinement effect results in color tuning of CsPbBr 3 NCs from green to blue, with high PLQEs of up to 81%.
-
Perovskite oxides (ABO3) have been widely recognized as a class of promising noble-metal–free electrocatalysts due to their unique compositional flexibility and structural stability. Surprisingly, investigation into their size-dependent electrocatalytic properties, in particular barium titanate (BaTiO3), has been comparatively few and limited in scope. Herein, we report the scrutiny of size- and dopant-dependent oxygen reduction reaction (ORR) activities of an array of judiciously designed pristine BaTiO3and doped BaTiO3(i.e., La- and Co-doped) nanoparticles (NPs). Specifically, a robust nanoreactor strategy, based on amphiphilic star-like diblock copolymers, is employed to synthesize a set of hydrophobic polymer-ligated uniform BaTiO3NPs of different sizes (≤20 nm) and controlled compositions. Quite intriguingly, the ORR activities are found to progressively decrease with the increasing size of BaTiO3NPs. Notably, La- and Co-doped BaTiO3NPs display markedly improved ORR performance over the pristine counterpart. This can be attributed to the reduced limiting barrier imposed by the formation of -OOH species during ORR due to enhanced adsorption energy of intermediates and the possibly increased conductivity as a result of change in the electronic states as revealed by our density functional theory–based first-principles calculations. Going beyond BaTiO3NPs, a variety of other ABO3NPs with tunable sizes and compositions may be readily accessible by exploiting ourmore »
-
Metal-ion batteries (e.g., lithium and sodium ion batteries) are the promising power sources for portable electronics, electric vehicles, and smart grids. Recent metal-ion batteries with organic liquid electrolytes still suffer from safety issues regarding inflammability and insufficient lifetime.1 As the next generation energy storage devices, all-solid-state batteries (ASSBs) have promising potentials for the improved safety, higher energy density, and longer cycle life than conventional Li-ion batteries.2 The nonflammable solid electrolytes (SEs), where only Li ions are mobile, could prevent battery combustion and explosion since the side reactions that cause safety issues as well as degradation of the battery performance are largely suppressed. However, their practical application is hampered by the high resistance arising at the solid–solid electrode–electrolyte interface (including cathode-electrolyte interface and anode-electrolyte interface).3 Several methods have been introduced to optimize the contact capability as well as the electrochemical/chemical stability between the metal anodes (i.e.: Li and Na) and the SEs, which exhibited decent results in decreasing the charge transfer resistance and broadening the range of the stable energy window (i.e., lowing the chemical potential of metal anode below the highest occupied molecular orbital of the SEs).4 Nevertheless, mitigation for the cathode in ASSB is tardily developed because: (1) themore »