Abstract The interaction of climate change and increasing anthropogenic water withdrawals is anticipated to alter surface water availability and the transport of carbon (C), nitrogen (N), and phosphorus (P) in river networks. But how changes to river flow will alter the balance, or stoichiometry, of these fluxes is unknown. The Lower Flint River Basin (LFRB) is part of an interstate watershed relied upon by several million people for diverse ecosystem services, including seasonal crop irrigation, municipal drinking water access, and public recreation. Recently, increased water demand compounded with intensified droughts have caused historically perennial streams in the LFRB to cease flowing, increasing ecosystem vulnerability. Our objectives were to quantify how riverine dissolved C:N:P varies spatially and seasonally and determine how monthly stoichiometric fluxes varied with overall water availability in a major tributary of LFRB. We used a long‐term record (21–29 years) of solute water chemistry (dissolved organic carbon, nitrate/nitrite, ammonia, and soluble reactive phosphorus) paired with long‐term stream discharge data across six sites within a single LFRB watershed. We found spatial and seasonal differences in soluble nutrient concentrations and stoichiometry attributable to groundwater connections, the presence of a major floodplain wetland, and flow conditions. Further, we showed that water availability, as indicated by the Palmer Drought Severity Index (PDSI), strongly predicted stoichiometry with generally lower C:N and C:P and higher N:P fluxes during periods of low water availability (PDSI < −4). These patterns suggest there may be long‐term and significant changes to stream ecosystem function as water availability is being dramatically altered by human demand with consequential impacts on solute transport, in‐stream processing, and stoichiometric ratios.
more »
« less
Water Availability for Cannabis in Northern California: Intersections of Climate, Policy, and Public Discourse
Availability of water for irrigated crops is driven by climate and policy, as moderated by public priorities and opinions. We explore how climate and water policy interact to influence water availability for cannabis (Cannabis sativa), a newly regulated crop in California, as well as how public discourse frames these interactions. Grower access to surface water covaries with precipitation frequency and oscillates consistently in an energetic 11–17 year wet-dry cycle. Assessing contemporary cannabis water policies against historic streamflow data showed that legal surface water access was most reliable for cannabis growers with small water rights (<600 m3) and limited during relatively dry years. Climate variability either facilitates or limits water access in cycles of 10–15 years—rendering cultivators with larger water rights vulnerable to periods of drought. However, news media coverage excludes growers’ perspectives and rarely mentions climate and weather, while public debate over growers’ irrigation water use presumes illegal diversion. This complicates efforts to improve growers’ legal water access, which are further challenged by climate. To promote a socially, politically, and environmentally viable cannabis industry, water policy should better represent growers’ voices and explicitly address stakeholder controversies as it adapts to this new and legal agricultural water user.
more »
« less
- Award ID(s):
- 1633756
- PAR ID:
- 10288433
- Date Published:
- Journal Name:
- Water
- Volume:
- 13
- Issue:
- 1
- ISSN:
- 2073-4441
- Page Range / eLocation ID:
- 5
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Abstract Standards of proof for attributing real world events/damage to global warming should be the same as in clinical or environmental lawsuits, argue Lloyd et al. The central question that we raise is effective communication. How can climate scientists best and effectively communicate their findings to crucial non-expert audiences, including public policy makers and civil society? To address this question, we look at the mismatch between what courts require and what climate scientists are setting as a bar of proof. Our first point is that scientists typically demand too much of themselves in terms of evidence, in comparison with the level of evidence required in a legal, regulatory, or public policy context. Our second point is to recommend that the Intergovernmental Panel on Climate Change recommend more prominently the use of the category “more likely than not” as a level of proof in their reports, as this corresponds to the standard of proof most frequently required in civil court rooms. This has also implications for public policy and the public communication of climate evidence.more » « less
-
Abstract Recent postwar recovery efforts have paved the way for reforms that advance women's participation in politics, inclusion in the economy, and access to justice. In this article, we show how a singular emphasis on gender reforms after war that are inattentive to other societal cleavages can leave various forms of marginalization in the shadows. Subnational interviews on the reverberations of gender reforms in five postwar countries expose three hierarchies that structure access to rights for war-affected communities. We reveal which violence is privileged, whose violence is privileged, and which responses are privileged from the perspectives of differently situated war-affected women, showing how patterns of access to new rights can reinforce exclusionary dynamics. Importantly, because international and domestic actors tend to privilege top-down, state-based responses to wartime violence (what we term hierarchies of remedy), hierarchies of violence and victimhood frequently also reflect state actors’ priorities. Speaking to debates on legal and policy reform, we acknowledge that attention to women's rights after war offers an urgently needed corrective to earlier gender inequalities. Yet, a singular focus on gender reforms that ignores other conflict-related cleavages, particularly those that are amplified by the distribution of political power within the state apparatus, can risk obstructing access for marginalized women, sometimes reproducing grievances that contributed to violence in the first place. For policymakers, we suggest that striving for more equal access to new rights after war will help foster a more inclusive—and therefore more stable and durable—peace.more » « less
-
Abstract The middle Rio Grande is a vital source of water for irrigation in the region. Climate change is impacting regional hydrology and is likely to put additional stress on a water supply that is already stretched thin. To gain insight on the hydrologic effects of climate change on reservoir storage, a simple water balance model was used to simulate the Elephant Butte–Caballo Reservoir system (southern New Mexico). The water balance model was forced by hydrologic inputs generated by 97 climate simulations derived from CMIP5 global climate models, coupled to a surface hydrologic model. Results suggest that the percentage of years that reservoir releases satisfy agricultural water rights allocations over the next 50 years (2021–70) will decrease relative to the past 50 years (1971–2020). The modeling also projects an increase in multiyear drought events that hinder reservoir management strategies to maintain high storage levels. In most cases, changes in reservoir inflows from distant upstream snowmelt is projected to have a greater influence on reservoir storage and water availability downstream of the reservoirs than will changes in local evaporation and precipitation from the reservoir surfaces.more » « less
-
Abstract Around the world, water rights systems govern the allocation of water to a multitude of users. Such systems primarily come into play during times of drought, when some users have to be shorted. Yet their management during times of excess can have implications for subsequent drought impacts. This is evident in the State of Colorado, where under “free river conditions” in which there is sufficient water to satisfy all water rights, anyone—including individuals lacking water rights—can divert as much as they want, unconstrained by the limit of their water right. Here, we estimate the amount of excess water used under such conditions within Division five of the Upper Colorado River Basin in the State of Colorado. Comparing the daily water withdrawals of diversion structures along the Colorado River and its tributaries with their (daily) water rights, we find that in 2017, 339 structures report days with excess withdrawals, amounting to 108 million cubic meters (87,577 acer feet). While such excess withdrawal is legal in Colorado, we argue that the free river condition is an antiquated rule that will make much needed reform of water allocation within the water‐stressed Colorado River Basin more difficult. We offer policy suggestions to address it.more » « less
An official website of the United States government

