The spread of an infectious disease depends on intrinsic properties of the disease as well as the connectivity and actions of the population. This study investigates the dynamics of an SIR type model which accounts for human tendency to avoid infection while also maintaining preexisting, interpersonal relationships. Specifically, we use a network model in which individuals probabilistically deactivate connections to infected individuals and later reconnect to the same individuals upon recovery. To analyze this network model, a mean field approximation consisting of a system of fourteen ordinary differential equations for the number of nodes and edges is developed. This system of equations is closed using a moment closure approximation for the number of triple links. By analyzing the differential equations, it is shown that, in addition to force of infection and recovery rate, the probability of deactivating edges and the average node degree of the underlying network determine if an epidemic occurs.
more »
« less
A Low-Dimensional Network Model for an SIS Epidemic: Analysis of the Super Compact Pairwise Model
Abstract Network-based models of epidemic spread have become increasingly popular in recent decades. Despite a rich foundation of such models, few low-dimensional systems for modeling SIS-type diseases have been proposed that manage to capture the complex dynamics induced by the network structure. We analyze one recently introduced model and derive important epidemiological quantities for the system. We derive the epidemic threshold and analyze the bifurcation that occurs, and we use asymptotic techniques to derive an approximation for the endemic equilibrium when it exists. We consider the sensitivity of this approximation to network parameters, and the implications for disease control measures are found to be in line with the results of existing studies.
more »
« less
- Award ID(s):
- 1817124
- PAR ID:
- 10288770
- Date Published:
- Journal Name:
- Bulletin of Mathematical Biology
- Volume:
- 83
- Issue:
- 7
- ISSN:
- 0092-8240
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The spread of an epidemic is often modeled by an SIR random process on a social network graph. The MinInfEdge problem for optimal social distancing involves minimizing the expected number of infections, when we are allowed to break at most B edges; similarly the MinInfNode problem involves removing at most B vertices. These are fundamental problems in epidemiology and network science. While a number of heuristics have been considered, the complexity of these problems remains generally open. In this paper, we present two bicriteria approximation algorithms for MinInfEdge, which give the first non-trivial approximations for this problem. The first is based on the cut sparsification result of Karger, and works when the transmission probabilities are not too small. The second is a Sample Average Approximation--based algorithm, which we analyze for the Chung-Lu random graph model. We also extend some of our results to tackle the MinInfNode problem.more » « less
-
A key scientific challenge during the outbreak of novel infectious diseases is to predict how the course of the epidemic changes under countermeasures that limit interaction in the population. Most epidemiological models do not consider the role of mutations and heterogeneity in the type of contact events. However, pathogens have the capacity to mutate in response to changing environments, especially caused by the increase in population immunity to existing strains, and the emergence of new pathogen strains poses a continued threat to public health. Further, in the light of differing transmission risks in different congregate settings (e.g., schools and offices), different mitigation strategies may need to be adopted to control the spread of infection. We analyze a multilayer multistrain model by simultaneously accounting for i) pathways for mutations in the pathogen leading to the emergence of new pathogen strains, and ii) differing transmission risks in different settings, modeled as network layers. Assuming complete cross-immunity among strains, namely, recovery from any infection prevents infection with any other (an assumption that will need to be relaxed to deal with COVID-19 or influenza), we derive the key epidemiological parameters for the multilayer multistrain framework. We demonstrate that reductions to existing models that discount heterogeneity in either the strain or the network layers may lead to incorrect predictions. Our results highlight that the impact of imposing/lifting mitigation measures concerning different contact network layers (e.g., school closures or work-from-home policies) should be evaluated in connection with their effect on the likelihood of the emergence of new strains.more » « less
-
Epidemic containment has long been a crucial task in many high-stake application domains, ranging from public health to misinformation dissemination. Existing studies for epidemic containment are primarily focused on undirected networks, assuming that the infection rate is constant throughout the contact network regardless of the strength and direction of contact. However, such an assumption can be unrealistic given the asymmetric nature of the real-world infection process. To tackle the epidemic containment problem in directed networks, simply grafting the methods designed for undirected network can be problematic, as most of the existing methods rely on the orthogonality and Lipschitz continuity in the eigensystem of the underlying contact network, which do not hold for directed networks. In this work, we derive a theoretical analysis on the general epidemic threshold condition for directed networks and show that such threshold condition can be used as an optimization objective to control the spread of the disease. Based on the epidemic threshold, we propose an asymptotically greedy algorithm DINO (DIrected NetwOrk epidemic containment) to identify the most critical nodes for epidemic containment. The proposed algorithm is evaluated on real-world directed networks, and the results validate its effectiveness and efficiency.more » « less
-
Abstract Stochastic epidemic models (SEMs) fit to incidence data are critical to elucidating outbreak dynamics, shaping response strategies, and preparing for future epidemics. SEMs typically represent counts of individuals in discrete infection states using Markov jump processes (MJPs), but are computationally challenging as imperfect surveillance, lack of subject‐level information, and temporal coarseness of the data obscure the true epidemic. Analytic integration over the latent epidemic process is impossible, and integration via Markov chain Monte Carlo (MCMC) is cumbersome due to the dimensionality and discreteness of the latent state space. Simulation‐based computational approaches can address the intractability of the MJP likelihood, but are numerically fragile and prohibitively expensive for complex models. A linear noise approximation (LNA) that approximates the MJP transition density with a Gaussian density has been explored for analyzing prevalence data in large‐population settings, but requires modification for analyzing incidence counts without assuming that the data are normally distributed. We demonstrate how to reparameterize SEMs to appropriately analyze incidence data, and fold the LNA into a data augmentation MCMC framework that outperforms deterministic methods, statistically, and simulation‐based methods, computationally. Our framework is computationally robust when the model dynamics are complex and applies to a broad class of SEMs. We evaluate our method in simulations that reflect Ebola, influenza, and SARS‐CoV‐2 dynamics, and apply our method to national surveillance counts from the 2013–2015 West Africa Ebola outbreak.more » « less
An official website of the United States government

