- Award ID(s):
- 2009210
- NSF-PAR ID:
- 10288832
- Date Published:
- Journal Name:
- Monthly Notices of the Royal Astronomical Society
- Volume:
- 498
- Issue:
- 2
- ISSN:
- 0035-8711
- Page Range / eLocation ID:
- 2614 to 2631
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
ABSTRACT We present the calibration of the Dark Energy Survey Year 3 (DES Y3) weak lensing (WL) source galaxy redshift distributions n(z) from clustering measurements. In particular, we cross-correlate the WL source galaxies sample with redMaGiC galaxies (luminous red galaxies with secure photometric redshifts) and a spectroscopic sample from BOSS/eBOSS to estimate the redshift distribution of the DES sources sample. Two distinct methods for using the clustering statistics are described. The first uses the clustering information independently to estimate the mean redshift of the source galaxies within a redshift window, as done in the DES Y1 analysis. The second method establishes a likelihood of the clustering data as a function of n(z), which can be incorporated into schemes for generating samples of n(z) subject to combined clustering and photometric constraints. Both methods incorporate marginalization over various astrophysical systematics, including magnification and redshift-dependent galaxy-matter bias. We characterize the uncertainties of the methods in simulations; the first method recovers the mean z of tomographic bins to RMS (precision) of ∼0.014. Use of the second method is shown to vastly improve the accuracy of the shape of n(z) derived from photometric data. The two methods are then applied to the DES Y3 data.more » « less
-
ABSTRACT The fiducial cosmological analyses of imaging surveys like DES typically probe the Universe at redshifts z < 1. We present the selection and characterization of high-redshift galaxy samples using DES Year 3 data, and the analysis of their galaxy clustering measurements. In particular, we use galaxies that are fainter than those used in the previous DES Year 3 analyses and a Bayesian redshift scheme to define three tomographic bins with mean redshifts around z ∼ 0.9, 1.2, and 1.5, which extend the redshift coverage of the fiducial DES Year 3 analysis. These samples contain a total of about 9 million galaxies, and their galaxy density is more than 2 times higher than those in the DES Year 3 fiducial case. We characterize the redshift uncertainties of the samples, including the usage of various spectroscopic and high-quality redshift samples, and we develop a machine-learning method to correct for correlations between galaxy density and survey observing conditions. The analysis of galaxy clustering measurements, with a total signal to noise S/N ∼ 70 after scale cuts, yields robust cosmological constraints on a combination of the fraction of matter in the Universe Ωm and the Hubble parameter h, $\Omega _m h = 0.195^{+0.023}_{-0.018}$, and 2–3 per cent measurements of the amplitude of the galaxy clustering signals, probing galaxy bias and the amplitude of matter fluctuations, bσ8. A companion paper (in preparation) will present the cross-correlations of these high-z samples with cosmic microwave background lensing from Planck and South Pole Telescope, and the cosmological analysis of those measurements in combination with the galaxy clustering presented in this work.
-
ABSTRACT Galaxy–galaxy lensing (GGL) and clustering measurements from the Dark Energy Spectroscopic Instrument Year 1 (DESI Y1) data set promise to yield unprecedented combined-probe tests of cosmology and the galaxy–halo connection. In such analyses, it is essential to identify and characterize all relevant statistical and systematic errors. We forecast the covariances of DESI Y1 GGL + clustering measurements and the systematic bias due to redshift evolution in the lens samples. Focusing on the projected clustering and GGL correlations, we compute a Gaussian analytical covariance, using a suite of N-body and lognormal simulations to characterize the effect of the survey footprint. Using the DESI one percent survey data, we measure the evolution of galaxy bias parameters for the DESI luminous red galaxy (LRG) and bright galaxy survey (BGS) samples. We find mild evolution in the LRGs in $0.4 < z < 0.8$, subdominant to the expected statistical errors. For BGS, we find less evolution for brighter absolute magnitude cuts, at the cost of reduced sample size. We find that for a redshift bin width $\Delta z = 0.1$, evolution effects on DESI Y1 GGL is negligible across all scales, all fiducial selection cuts, all fiducial redshift bins. Galaxy clustering is more sensitive to evolution due to the bias squared scaling. Nevertheless the redshift evolution effect is insignificant for clustering above the 1-halo scale of $0.1h^{-1}$ Mpc. For studies that wish to reliably access smaller scales, additional treatment of redshift evolution is likely needed. This study serves as a reference for GGL and clustering studies using the DESI Y1 sample.
-
Abstract We utilize ∼17,000 bright luminous red galaxies (LRGs) from the novel Dark Energy Spectroscopic Instrument Survey Validation spectroscopic sample, leveraging its deep (∼2.5 hr galaxy−1exposure time) spectra to characterize the contribution of recently quenched galaxies to the massive galaxy population at 0.4 <
z < 1.3. We useProspector to infer nonparametric star formation histories and identify a significant population of recently quenched galaxies that have joined the quiescent population within the past ∼1 Gyr. The highest-redshift subset (277 atz > 1) of our sample of recently quenched galaxies represents the largest spectroscopic sample of post-starburst galaxies at that epoch. At 0.4 <z < 0.8, we measure the number density of quiescent LRGs, finding that recently quenched galaxies constitute a growing fraction of the massive galaxy population with increasing look-back time. Finally, we quantify the importance of this population among massive ( > 11.2) LRGs by measuring the fraction of stellar mass each galaxy formed in the gigayear before observation,f 1 Gyr. Although galaxies withf 1 Gyr> 0.1 are rare atz ∼ 0.4 (≲0.5% of the population), byz ∼ 0.8, they constitute ∼3% of massive galaxies. Relaxing this threshold, we find that galaxies withf 1 Gyr> 5% constitute ∼10% of the massive galaxy population atz ∼ 0.8. We also identify a small but significant sample of galaxies atz = 1.1–1.3 that formed withf 1 Gyr> 50%, implying that they may be analogs to high-redshift quiescent galaxies that formed on similar timescales. Future analysis of this unprecedented sample promises to illuminate the physical mechanisms that drive the quenching of massive galaxies after cosmic noon. -
ABSTRACT In this work, we present the galaxy clustering measurements of the two DES lens galaxy samples: a magnitude-limited sample optimized for the measurement of cosmological parameters, maglim, and a sample of luminous red galaxies selected with the redmagic algorithm. maglim/redmagic sample contains over 10 million/2.5 million galaxies and is divided into six/five photometric redshift bins spanning the range z ∈ [0.20, 1.05]/z ∈ [0.15, 0.90]. Both samples cover 4143 $\deg ^2$ over which we perform our analysis blind, measuring the angular correlation function with an S/N ∼ 63 for both samples. In a companion paper, these measurements of galaxy clustering are combined with the correlation functions of cosmic shear and galaxy–galaxy lensing of each sample to place cosmological constraints with a 3 × 2pt analysis. We conduct a thorough study of the mitigation of systematic effects caused by the spatially varying survey properties and we correct the measurements to remove artificial clustering signals. We employ several decontamination methods with different configurations to ensure the robustness of our corrections and to determine the systematic uncertainty that needs to be considered for the final cosmology analyses. We validate our fiducial methodology using lognormal mocks, showing that our decontamination procedure induces biases no greater than 0.5σ in the (Ωm, b) plane, where b is the galaxy bias.