skip to main content


Title: Multi-Agent Path Planning Under Observation Schedule Constraints
We consider the problem of enhanced security of multi-robot systems to prevent cyber-attackers from taking control of one or more robots in the group. We build upon a recently proposed solution that utilizes the physical measurement capabilities of the robots to perform introspection, i.e., detect the malicious actions of compromised agents using other members of the group. In particular, the proposed solution finds multi-agent paths on discrete spaces combined with a set of mutual observations at specific locations to detect robots with significant deviations from the preordained routes. In this paper, we develop a planner that works on continuous configuration spaces while also taking into account similar spatio-temporal constraints. In addition, the planner allows for more general tasks that can be formulated as arbitrary smooth cost functions to be specified. The combination of constraints and objectives considered in this paper are not easily handled by popular path planning algorithms (e.g., sampling-based methods), thus we propose a method based on the Alternating Direction Method of Multipliers (ADMM). ADMM is capable of finding locally optimal solutions to problems involving different kinds of objectives and non-convex temporal and spatial constraints, and allows for infeasible initialization. We benchmark our proposed method on multi-agent map exploration with minimum-uncertainty cost function, obstacles, and observation schedule constraints.  more » « less
Award ID(s):
1932162
NSF-PAR ID:
10288860
Author(s) / Creator(s):
;
Date Published:
Journal Name:
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
Page Range / eLocation ID:
6990 to 6997
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In this paper, we focus on using path planning and inter-agent measurements to improve the security of multi-robot systems against possible takeovers from cyber-attackers. We build upon recent trajectory optimization approaches where introspective measurement capabilities of the robots are used in an co-observation schedule to detect deviations from the preordained routes. This paper proposes additional constraints that can be incorporated in the previous trajectory optimization algorithm based on Alternating Direction Method of Multipliers (ADMM). The new constraints provide guarantees that a compromised robot cannot reach a designed safety zone between observations despite adversarial movement by the attacker. We provide a simulation showcasing the new components of the formulation in a multi-agent map exploration task with several safety zones. 
    more » « less
  2. null (Ed.)
    This paper addresses the problem of autonomously deploying an unmanned aerial vehicle in non-trivial settings, by leveraging a manipulator arm mounted on a ground robot, acting as a versatile mobile launch platform. As real-world deployment scenarios for micro aerial vehicles such as searchand- rescue operations often entail exploration and navigation of challenging environments including uneven terrain, cluttered spaces, or even constrained openings and passageways, an often arising problem is that of ensuring a safe take-off location, or safely fitting through narrow openings while in flight. By facilitating launching from the manipulator end-effector, a 6- DoF controllable take-off pose within the arm workspace can be achieved, which allows to properly position and orient the aerial vehicle to initialize the autonomous flight portion of a mission. To accomplish this, we propose a sampling-based planner that respects a) the kinematic constraints of the ground robot / manipulator / aerial robot combination, b) the geometry of the environment as autonomously mapped by the ground robots perception systems, and c) accounts for the aerial robot expected dynamic motion during takeoff. The goal of the proposed planner is to ensure autonomous collision-free initialization of an aerial robotic exploration mission, even within a cluttered constrained environment. At the same time, the ground robot with the mounted manipulator can be used to appropriately position the take-off workspace into areas of interest, effectively acting as a carrier launch platform. We experimentally demonstrate this novel robotic capability through a sequence of experiments that encompass a micro aerial vehicle platform carried and launched from a 6-DoF manipulator arm mounted on a four-wheel robot base. 
    more » « less
  3. Predicting the occurrence of a particular event of interest at future time points is the primary goal of survival analysis. The presence of incomplete observations due to time limitations or loss of data traces is known as censoring which brings unique challenges in this domain and differentiates survival analysis from other standard regression methods. The popularly used survival analysis methods such as Cox proportional hazard model and parametric survival regression suffer from some strict assumptions and hypotheses that are not realistic in most of the real-world applications. To overcome the weaknesses of these two types of methods, in this paper, we reformulate the survival analysis problem as a multi-task learning problem and propose a new multi-task learning based formulation to predict the survival time by estimating the survival status at each time interval during the study duration. We propose an indicator matrix to enable the multi-task learning algorithm to handle censored instances and incorporate some of the important characteristics of survival problems such as non-negative non-increasing list structure into our model through max-heap projection. We employ the L2,1-norm penalty which enables the model to learn a shared representation across related tasks and hence select important features and alleviate over-fitting in high-dimensional feature spaces; thus, reducing the prediction error of each task. To efficiently handle the two non-smooth constraints, in this paper, we propose an optimization method which employs Alternating Direction Method of Multipliers (ADMM) algorithm to solve the proposed multi-task learning problem. We demonstrate the performance of the proposed method using real-world microarray gene expression high-dimensional benchmark datasets and show that our method outperforms state-of-the-art methods. 
    more » « less
  4. null (Ed.)
    Mobile robots are increasingly populating homes, hospitals, shopping malls, factory floors, and other human environments. Human society has social norms that people mutually accept; obeying these norms is an essential signal that someone is participating socially with respect to the rest of the population. For robots to be socially compatible with humans, it is crucial for robots to obey these social norms. In prior work, we demonstrated a Socially-Aware Navigation (SAN) planner, based on Pareto Concavity Elimination Transformation (PaCcET), in a hallway scenario, optimizing two objectives so the robot does not invade the personal space of people. This article extends our PaCcET-based SAN planner to multiple scenarios with more than two objectives. We modified the Robot Operating System’s (ROS) navigation stack to include PaCcET in the local planning task. We show that our approach can accommodate multiple Human-Robot Interaction (HRI) scenarios. Using the proposed approach, we achieved successful HRI in multiple scenarios such as hallway interactions, an art gallery, waiting in a queue, and interacting with a group. We implemented our method on a simulated PR2 robot in a 2D simulator (Stage) and a pioneer-3DX mobile robot in the real-world to validate all the scenarios. A comprehensive set of experiments shows that our approach can handle multiple interaction scenarios on both holonomic and non-holonomic robots; hence, it can be a viable option for a Unified Socially-Aware Navigation (USAN). 
    more » « less
  5. null (Ed.)
    This paper reports on developing an integrated framework for safety-aware informative motion planning suitable for legged robots. The information-gathering planner takes a dense stochastic map of the environment into account, while safety constraints are enforced via Control Barrier Functions (CBFs). The planner is based on the Incrementally-exploring Information Gathering (IIG) algorithm and allows closed-loop kinodynamic node expansion using a Model Predictive Control (MPC) formalism. Robotic exploration and information gathering problems are inherently path-dependent problems. That is, the information collected along a path depends on the state and observation history. As such, motion planning solely based on a modular cost does not lead to suitable plans for exploration. We propose SAFE-IIG, an integrated informative motion planning algorithm that takes into account: 1) a robot’s perceptual field of view via a submodular information function computed over a stochastic map of the environment, 2) a robot’s dynamics and safety constraints via discrete-time CBFs and MPC for closedloop multi-horizon node expansions, and 3) an automatic stopping criterion via setting an information-theoretic planning horizon. The simulation results show that SAFE-IIG can plan a safe and dynamically feasible path while exploring a dense map. 
    more » « less