skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1932162

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We address the security of a network of Connected and Automated Vehicles (CAVs) cooperating to safely navigate through a conflict area (e.g., traffic intersections, merging roadways, roundabouts). Previous studies have shown that such a network can be targeted by adversarial attacks causing traffic jams or safety violations ending in collisions. We focus on attacks targeting the V2X communication network used to share vehicle data and consider as well uncertainties due to noise in sensor measurements and communication channels. To combat these, motivated by recent work on the safe control of CAVs, we propose a trust-aware robust event-triggered decentralized control and coordination framework that can provably guarantee safety. We maintain a trust metric for each vehicle in the network computed based on their behavior and used to balance the tradeoff between conservativeness (when deeming every vehicle as untrustworthy) and guaranteed safety and security. It is important to highlight that our framework is invariant to the specific choice of the trust framework. Based on this framework, we propose an attack detection and mitigation scheme which has twofold benefits: (i) the trust framework is immune to false positives, and (ii) it provably guarantees safety against false positive cases. We use extensive simulations (in SUMO and CARLA) to validate the theoretical guarantees and demonstrate the efficacy of our proposed scheme to detect and mitigate adversarial attacks. 
    more » « less
  2. In this paper we analyze the effect of cyberattacks on cooperative control of connected and autonomous vehicles (CAVs) at traffic bottleneck points. We focus on three types of such bottleneck points including merging roadways, intersections and roundabouts. The coordination amongst CAVs in the network is achieved in a decentralized manner whereby each CAV formulates its own optimal control problem and solves it onboard in real time. A roadside unit is introduced to act as the coordinator that communicates and exchanges relevant data with the CAVs through wireless V2X communication. We show that this CAV setup is vulnerable to various cyberattacks such as Sybil attack, jamming attack and false data injection attack. Results from our simulation experiments call attention to the extent to which such attacks may jeopardize the coordination performance and the safety of the CAVs. 
    more » « less
  3. The Weighted-Mean Subsequence Reduced (W-MSR) algorithm, the state-of-the-art method for Byzantine-resilient design of decentralized multi-robot systems, is based on discarding outliers received over Linear Consensus Protocol (LCP). Although W-MSR provides theoretical guarantees relating network connectivity to the convergence of the underlying consensus, W-MSR comes with several limitations: the number of Byzantine robots, 𝐹 , to tolerate should be known a priori, each robot needs to maintain 2𝐹 + 1 neighbors, 𝐹 + 1 robots must independently make local measurements of the consensus property in order for the swarm’s decision to change, and W-MSR is specific to LCP and does not generalize to applications not implemented over LCP. In this work, we pro- pose a Decentralized Blocklist Protocol (DBP) based on inter-robot accusations. Accusations are made on the basis of locally-made observations of misbehavior, and once shared by cooperative robots across the network are used as input to a graph matching algorithm that computes a blocklist. DBP generalizes to applications not implemented via LCP, is adaptive to the number of Byzantine robots, and allows for fast information propagation through the multi- robot system while simultaneously reducing the required network connectivity relative to W-MSR. On LCP-type applications, DBP reduces the worst-case connectivity requirement of W-MSR from (2𝐹 + 1)-connected to (𝐹 + 1)-connected and the minimum number of cooperative observers required to propagate new information from 𝐹 + 1 to just 1 observer. We demonstrate that our approach to Byzantine resilience scales to hundreds of robots on target tracking, time synchronization, and localization case studies. 
    more » « less
  4. In centralized multi-robot systems, a central entity (CE) checks that robots follow their assigned motion plans by comparing their expected location to the location they self-report. We show that this self-reporting monitoring mechanism is vulnerable to plan- deviation attacks where compromised robots don’t follow their assigned plans while trying to conceal their movement by misreporting their location. We propose a two-pronged mitigation for plan-deviation attacks: (1) an attack detection technique leveraging both the robots’ local sensing capabilities to report observations of other robots and co-observation schedules generated by the CE, and (2) a prevention technique where the CE issues horizon-limiting announcements to the robots, reducing their instantaneous knowledge of forward lookahead steps in the global motion plan. On a large-scale automated warehouse benchmark, we show that our solution enables attack prevention guarantees from a stealthy attacker that has compromised multiple robots. 
    more » « less
  5. In this paper, we focus on using path planning and inter-agent measurements to improve the security of multi-robot systems against possible takeovers from cyber-attackers. We build upon recent trajectory optimization approaches where introspective measurement capabilities of the robots are used in an co-observation schedule to detect deviations from the preordained routes. This paper proposes additional constraints that can be incorporated in the previous trajectory optimization algorithm based on Alternating Direction Method of Multipliers (ADMM). The new constraints provide guarantees that a compromised robot cannot reach a designed safety zone between observations despite adversarial movement by the attacker. We provide a simulation showcasing the new components of the formulation in a multi-agent map exploration task with several safety zones. 
    more » « less
  6. null (Ed.)
    We consider the problem of enhanced security of multi-robot systems to prevent cyber-attackers from taking control of one or more robots in the group. We build upon a recently proposed solution that utilizes the physical measurement capabilities of the robots to perform introspection, i.e., detect the malicious actions of compromised agents using other members of the group. In particular, the proposed solution finds multi-agent paths on discrete spaces combined with a set of mutual observations at specific locations to detect robots with significant deviations from the preordained routes. In this paper, we develop a planner that works on continuous configuration spaces while also taking into account similar spatio-temporal constraints. In addition, the planner allows for more general tasks that can be formulated as arbitrary smooth cost functions to be specified. The combination of constraints and objectives considered in this paper are not easily handled by popular path planning algorithms (e.g., sampling-based methods), thus we propose a method based on the Alternating Direction Method of Multipliers (ADMM). ADMM is capable of finding locally optimal solutions to problems involving different kinds of objectives and non-convex temporal and spatial constraints, and allows for infeasible initialization. We benchmark our proposed method on multi-agent map exploration with minimum-uncertainty cost function, obstacles, and observation schedule constraints. 
    more » « less
  7. The advent of autonomous mobile multi-robot systems has driven innovation in both the industrial and defense sectors. The integration of such systems in safety- and security- critical applications has raised concern over their resilience to attack. In this work, we investigate the security problem of a stealthy adversary masquerading as a properly functioning agent. We show that conventional multi-agent pathfinding solutions are vulnerable to these physical masquerade attacks. Furthermore, we provide a constraint-based formulation of multi-agent pathfinding that yields multi-agent plans that are provably resilient to physical masquerade attacks. This formalization leverages inter-agent observations to facilitate introspective monitoring to guarantee resilience. 
    more » « less