skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Multi-Agent Path Planning Under Observation Schedule Constraints
We consider the problem of enhanced security of multi-robot systems to prevent cyber-attackers from taking control of one or more robots in the group. We build upon a recently proposed solution that utilizes the physical measurement capabilities of the robots to perform introspection, i.e., detect the malicious actions of compromised agents using other members of the group. In particular, the proposed solution finds multi-agent paths on discrete spaces combined with a set of mutual observations at specific locations to detect robots with significant deviations from the preordained routes. In this paper, we develop a planner that works on continuous configuration spaces while also taking into account similar spatio-temporal constraints. In addition, the planner allows for more general tasks that can be formulated as arbitrary smooth cost functions to be specified. The combination of constraints and objectives considered in this paper are not easily handled by popular path planning algorithms (e.g., sampling-based methods), thus we propose a method based on the Alternating Direction Method of Multipliers (ADMM). ADMM is capable of finding locally optimal solutions to problems involving different kinds of objectives and non-convex temporal and spatial constraints, and allows for infeasible initialization. We benchmark our proposed method on multi-agent map exploration with minimum-uncertainty cost function, obstacles, and observation schedule constraints.  more » « less
Award ID(s):
1932162
PAR ID:
10288860
Author(s) / Creator(s):
;
Date Published:
Journal Name:
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
Page Range / eLocation ID:
6990 to 6997
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In this paper, we focus on using path planning and inter-agent measurements to improve the security of multi-robot systems against possible takeovers from cyber-attackers. We build upon recent trajectory optimization approaches where introspective measurement capabilities of the robots are used in an co-observation schedule to detect deviations from the preordained routes. This paper proposes additional constraints that can be incorporated in the previous trajectory optimization algorithm based on Alternating Direction Method of Multipliers (ADMM). The new constraints provide guarantees that a compromised robot cannot reach a designed safety zone between observations despite adversarial movement by the attacker. We provide a simulation showcasing the new components of the formulation in a multi-agent map exploration task with several safety zones. 
    more » « less
  2. In multi-agent systems, limited resources must be shared by individuals during missions to maximize the group utility of the system in the field. In this paper, we present a generalized adaptive self-organization process for multi-agent systems featuring fast and efficient distribution of a consumable and refillable on-board resource throughout the group. An adaptive inter-agent spacing (AIS) controller based on individual resource levels is proposed that spaces out high resource bearing agents throughout the group including the group boundary extrema, and allows low resource bearing agents to adaptively occupy the in-between spaces receiving resource from the high resource bearing agents without over-crowding. Experimental results for cases with and without the proposed AIS controller validate faster convergence of individual resource levels to the group mean resource level using the proposed AIS controller. The generalized approach of the self-organizing process allows flexibility in adapting the proposed AIS controller for various multi-agent applications. 
    more » « less
  3. Multi-Agent Motion Planning (MAMP) finds various applications in fields such as traffic management, airport operations, and warehouse automation. In many of these environments, differential drive robots are commonly used. These robots have a kinodynamic model that allows only in-place rotation and movement along their current orientation, subject to speed and acceleration limits. However, existing Multi-Agent Path Finding (MAPF)-based methods often use simplified models for robot kinodynamics, which limits their practicality and realism. In this paper, we introduce a three-level framework called MASS to address these challenges. MASS combines MAPF-based methods with our proposed stationary state search planner to generate high-quality kinodynamically-feasible plans. We further extend MASS using an adaptive window mechanism to address the lifelong MAMP problem. Empirically, we tested our methods on the single-shot grid map domain and the lifelong warehouse domain. Our method shows up to 400% improvements in terms of throughput compared to existing methods. 
    more » « less
  4. In distributed optimization schemes consisting of a group of agents connected to a central coordinator, the optimization algorithm often involves the agents solving private local sub-problems and exchanging data frequently with the coordinator to solve the global distributed problem. In those cases, the query-response mechanism usually causes excessive communication costs to the system, necessitating communication reduction in scenarios where communication is costly. Integrating Gaussian processes (GP) as a learning component to the Alternating Direction Method of Multipliers (ADMM) has proven effective in learning each agent’s local proximal operator to reduce the required communication exchange. A key element for integrating GP into the ADMM algorithm is the querying mechanism upon which the coordinator decides when communication with an agent is required. In this paper, we formulate a general querying decision framework as an optimization problem that balances reducing the communication cost and decreasing the prediction error. Under this framework, we propose a joint query strategy that takes into account the joint statistics of the query and ADMM variables and the total communication cost of all agents in the presence of uncertainty caused by the GP regression. In addition, we derive three different decision mechanisms that simplify the general framework by making the communication decision for each agent individually. We integrate multiple measures to quantify the trade-off between the communication cost reduction and the optimization solution’s accuracy/optimality. The proposed methods can achieve significant communication reduction and good optimization solution accuracy for distributed optimization, as demonstrated by extensive simulations of a distributed sharing problem. 
    more » « less
  5. Planning long-horizon robot manipulation requires making discrete decisions about which objects to interact with and continuous decisions about how to interact with them. A robot planner must select grasps, placements, and motions that are feasible and safe. This class of problems falls under Task and Motion Planning (TAMP) and poses significant computational challenges in terms of algorithm runtime and solution quality, particularly when the solution space is highly constrained. To address these challenges, we propose a new bilevel TAMP algorithm that leverages GPU parallelism to efficiently explore thousands of candidate continuous solutions simultaneously. Our approach uses GPU parallelism to sample an initial batch of solution seeds for a plan skeleton and to apply differentiable optimization on this batch to satisfy plan constraints and minimize solution cost with respect to soft objectives. We demonstrate that our algorithm can effectively solve highly constrained problems with non-convex constraints in just seconds, substantially outperforming serial TAMP approaches, and validate our approach on multiple realworld robots. 
    more » « less