Abstract Global tropical cyclone (TC) frequency is investigated in a 50‐km‐resolution aquaplanet model forced by zonally symmetric sea surface temperature (SST). TC frequency per unit area is found to be proportional to the Coriolis parameter at the intertropical convergence zone (ITCZ), as defined by the latitude of maximum precipitation. As the latitude of maximum SST is shifted northward from the equator, the precipitation maximum moves northward and TC frequency increases. When the SST maximum is shifted northward past 25°N, the precipitation maximum remains between 15°N and 20°N, and TC frequency per unit area is approximately constant. When applied to observed precipitation and SST data, the same scaling captures a substantial fraction of observed TCs. Results suggest that future changes in TC activity will be modulated by changes in the large‐scale circulation, and in particular that the ITCZ location is an important determinant of the number of TCs.
more »
« less
Idealized Aquaplanet Simulations of Tropical Cyclone Activity: Significance of Temperature Gradients, Hadley Circulation, and Zonal Asymmetry
Abstract Earlier studies have proposed many semiempirical relations between climate and tropical cyclone (TC) activity. To explore these relations, this study conducts idealized aquaplanet experiments using both symmetric and asymmetric sea surface temperature (SST) forcings. With zonally symmetric SST forcings that have a maximum at 10°N, reducing meridional SST gradients around an Earth-like reference state leads to a weakening and southward displacement of the intertropical convergence zone. With nearly flat meridional gradients, warm-hemisphere TC numbers increase by nearly 100 times due particularly to elevated high-latitude TC activity. Reduced meridional SST gradients contribute to a poleward expansion of the tropics, which is associated with a poleward migration of the latitudes where TCs form or reach their lifetime maximum intensity. However, these changes cannot be simply attributed to the poleward expansion of Hadley circulation. Introducing zonally asymmetric SST forcings tends to decrease the global TC number. Regional SST warming—prescribed with or without SST cooling at other longitudes—affects local TC activity but does not necessarily increase TC genesis. While regional warming generally suppresses TC activity in remote regions with relatively cold SSTs, one experiment shows a surprisingly large increase of TC genesis. This increase of TC genesis over relatively cold SSTs is related to local tropospheric cooling that reduces static stability near 15°N and vertical wind shear around 25°N. Modeling results are discussed with scaling analyses and have implications for the application of the “convective quasi-equilibrium and weak temperature gradient” framework.
more »
« less
- Award ID(s):
- 1830729
- PAR ID:
- 10288957
- Date Published:
- Journal Name:
- Journal of the Atmospheric Sciences
- Volume:
- 78
- Issue:
- 3
- ISSN:
- 0022-4928
- Page Range / eLocation ID:
- 877 to 902
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Abstract This study revisits the superintensity of tropical cyclones (TCs), which is defined as the excess maximum surface wind speed normalized by the corresponding theoretical maximum potential intensity (MPI), based on ensemble axisymmetric numerical simulations, with the focus on the dependence of superintensity on the prescribed sea surface temperature (SST) and the initial environmental atmospheric sounding. Results show a robust decrease of superintensity with increasing SST regardless of being in experiments with an SST-independent initial atmospheric sounding or in those with the SST-dependent initial atmospheric soundings as in nature sorted for the western North Pacific and the North Atlantic. It is found that the increase in either convective activity (and thus diabatic heating) in the TC outer region or theoretical MPI or both with increasing SST could reduce the superintensity. For a given SST-independent initial atmospheric sounding, the strength of convective activity in the TC outer region increases rapidly with increasing SST due to the rapidly increasing air–sea thermodynamic disequilibrium (and thus potential convective instability) with increasing SST. As a result, the decrease of superintensity with increasing SST in the SST-independent sounding experiments is dominated by the increasing convective activity in the TC outer region and is much larger than that in the SST-dependent sounding experiments, and the TC intensity becomes sub-MPI at relatively high SSTs in the former. Due to the marginal increasing tendency of convective activity in the TC outer region, the decrease of superintensity in the latter is dominated by the increase in theoretical MPI with increasing SST.more » « less
-
Abstract Simulations show that storm tracks were weaker during past cold, icy climates relative to the modern climate despite increased surface baroclinicity. Previous work explained the weak North Atlantic storm track during the Last Glacial Maximum using dry zonally asymmetric mechanisms associated with orographic forcing. Here we show that zonally symmetric mechanisms associated with the hydrological cycle explain the weak Snowball Earth storm track. The weak storm track is consistent with the decreased meridional gradient of evaporation and atmospheric shortwave absorption and can be predicted following global mean cooling and the Clausius‐Clapeyron relation. The weak storm track is also consistent with decreased latent heat release aloft in the tropics, which decreases upper tropospheric baroclinicity and mean available potential energy. Overall, both hydrological cycle mechanisms are reflected in the significant correlation between storm track intensity and the meridional surface moist static energy gradient across a range of simulated climates between modern and Snowball Earth.more » « less
-
Abstract The 1991–2020 climate normals for sea surface temperature (SST) are computed based on the NOAA Daily Optimum Interpolation SST dataset. This is the first time that high‐resolution SST normals with global coverage can be achieved in the satellite SST era. Normals are one of the fundamental parameters in describing and understanding weather and climate and provide decision‐making information to industry, public, and scientific communities. This product suite includes SST mean, standard deviation, count and extreme parameters at daily, monthly, seasonal and annual time scales on 0.25° spatial grids. The main feature of the SST mean state revealed by the normals is that in the Tropics, the Indo‐Pacific Ocean is dominated by the warm pool (SST ≥ 28°C) while the eastern Pacific is characterized by the cold tongue (SST ≤ 24°C); in the midlatitudes, SSTs are in zonal patterns with high meridional gradients. Daily SST standard deviations are generally small (<1.0°C) except in frontal zones (>1.5°C) mostly associated with ocean currents such as the Gulf Stream, Kuroshio and Equatorial Currents. Compared to the 1982–2011 climatology, the 1991–2020 mean SSTs increased over most global areas but obvious cooling is seen in the Southern Ocean, eastern tropical South Pacific Ocean and North Atlantic warming hole. The Indo‐Pacific warm pool (IPWP) is found to have strengthened in both intensity and coverage since 1982–2011. By a count parameter criterion of ≥300 days annually with SST ≥ 28°C, the IPWP coverage increased 33% from 1982–2011 to 1991–2020. The global mean SST of 1991–2020 is warmer than that of 1982–2011, and the warming rate over 1991–2020 doubles that over 1901–2020.more » « less
-
Tropical storms pose a significant risk to coastal populations, including those throughout the Caribbean and along the Atlantic and Gulf coasts of North America. The impact of climate change on tropical storms is multifaceted, and patterns of sea surface temperature (SST) change may play a role in shaping future tropical storm risk. While the SST fingerprints associated with changes in the Atlantic Meridional Overturning Circulation (AMOC) may be uncertain, the North Atlantic Warming Hole (NAWH) and enhanced SST warming near the Gulf Stream are robust features of both past and projected future climate change. Here we use the Community Earth System Model version 2 (CESM2) to highlight the remote contributions of both of these potential SST fingerprints of AMOC decline to changes in tropical cyclone (TC) genesis potential in the Atlantic basin, and thus to uncertainty in future coastal climate risk. Both the NAWH and enhanced warming near the Gulf Stream lead to significant changes in TC genesis potential, particularly in the western North Atlantic (between Bermuda and the Bahamas), the northeastern Gulf of Mexico and the Caribbean Sea, where changes are on the order of ±10% over the full Atlantic hurricane season, with considerably stronger responses focused in the two halves of the season. Diagnosis of the Genesis Potential Index (GPI) indicates that changes in mid-tropospheric humidity and vertical wind shear are the most important factors driving these responses. The simulated changes in GPI occur in regions of considerable historical TC genesis, highlighting the need to further understand the historical and projected future patterns of SST change in the North Atlantic Ocean, including their relationship to AMOC and its potential decline.more » « less
An official website of the United States government

