skip to main content

Title: Idealized Aquaplanet Simulations of Tropical Cyclone Activity: Significance of Temperature Gradients, Hadley Circulation, and Zonal Asymmetry
Abstract Earlier studies have proposed many semiempirical relations between climate and tropical cyclone (TC) activity. To explore these relations, this study conducts idealized aquaplanet experiments using both symmetric and asymmetric sea surface temperature (SST) forcings. With zonally symmetric SST forcings that have a maximum at 10°N, reducing meridional SST gradients around an Earth-like reference state leads to a weakening and southward displacement of the intertropical convergence zone. With nearly flat meridional gradients, warm-hemisphere TC numbers increase by nearly 100 times due particularly to elevated high-latitude TC activity. Reduced meridional SST gradients contribute to a poleward expansion of the tropics, which is associated with a poleward migration of the latitudes where TCs form or reach their lifetime maximum intensity. However, these changes cannot be simply attributed to the poleward expansion of Hadley circulation. Introducing zonally asymmetric SST forcings tends to decrease the global TC number. Regional SST warming—prescribed with or without SST cooling at other longitudes—affects local TC activity but does not necessarily increase TC genesis. While regional warming generally suppresses TC activity in remote regions with relatively cold SSTs, one experiment shows a surprisingly large increase of TC genesis. This increase of TC genesis over relatively cold SSTs is related more » to local tropospheric cooling that reduces static stability near 15°N and vertical wind shear around 25°N. Modeling results are discussed with scaling analyses and have implications for the application of the “convective quasi-equilibrium and weak temperature gradient” framework. « less
Authors:
; ; ;
Award ID(s):
1830729
Publication Date:
NSF-PAR ID:
10288957
Journal Name:
Journal of the Atmospheric Sciences
Volume:
78
Issue:
3
Page Range or eLocation-ID:
877 to 902
ISSN:
0022-4928
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract. Anthropogenic aerosols (AAs) induce global and regionaltropospheric circulation adjustments due to the radiative energyperturbations. The overall cooling effects of AA, which mask a portion ofglobal warming, have been the subject of many studies but still have largeuncertainty. The interhemispheric contrast in AA forcing has also beendemonstrated to induce a major shift in atmospheric circulation. However,the zonal redistribution of AA emissions since start of the 20th century, with anotable decline in the Western Hemisphere (North America and Europe) and acontinuous increase in the Eastern Hemisphere (South Asia and East Asia),has received less attention. Here we utilize four sets of single-model initial-conditionmore »large-ensemblesimulations with various combinations of external forcings to quantify theradiative and circulation responses due to the spatial redistribution of AAforcing during 1980–2020. In particular, we focus on the distinct climateresponses due to fossil-fuel-related (FF) aerosols emitted from the Western Hemisphere (WH) versus the Eastern Hemisphere (EH). The zonal (west to east) redistribution of FF aerosol emission since the1980s leads to a weakening negative radiative forcing over the WHmid-to-high latitudes and an enhancing negative radiative forcing over theEH at lower latitudes. Overall, the FF aerosol leads to a northward shift of the Hadley cell and an equatorward shift of the Northern Hemisphere (NH) jet stream. Here, two sets of regional FF simulations (Fix_EastFF1920and Fix_WestFF1920) are performed to separate the roles ofzonally asymmetric aerosol forcings. We find that the WH aerosol forcing,located in the extratropics, dominates the northward shift of the Hadley cell by inducing an interhemispheric imbalance in radiative forcing. On the other hand, the EH aerosol forcing, located closer to the tropics, dominates the equatorward shift of the NH jet stream. The consistent relationship between the jet stream shift and the top-of-atmosphere net solar flux (FSNTOA) gradient suggests that the latter serves as a rule-of-thumb guidance for the expected shift of the NH jet stream. The surface effect of EH aerosol forcing (mainly from low- to midlatitudes)is confined more locally and only induces weak warming over the northeastern Pacific and North Atlantic. In contrast, the WH aerosol reduction leads to a large-scale warming over NH mid-to-high latitudes that largely offsets the cooling over the northeastern Pacific due to EH aerosols. The simulated competing roles of regional aerosol forcings in drivingatmospheric circulation and surface temperature responses during the recentdecades highlight the importance of considering zonally asymmetric forcings(west to east) and also their meridional locations within the NH (tropicalvs. extratropical).« less
  2. Abstract

    Easterly waves (EWs) are off-equatorial tropical synoptic disturbances with a westward phase speed between 11 and 14 m s−1. Over the east Pacific in boreal summer, the combination of EWs and other synoptic disturbances, plus local mechanisms associated with sea surface temperature (SST) gradients, define the climatological structure of the intertropical convergence zone (ITCZ). The east Pacific ITCZ has both deep and shallow convection that is linked to deep and shallow meridional circulations, respectively. The deep convection is located around 9°N over warm SSTs. The shallow convection is located around 6°N and is driven by the meridional SST gradientmore »south of the ITCZ. This study aims to document the interaction between east Pacific EWs and the deep and shallow meridional circulations during the Organization of Tropical East Pacific Convection (OTREC) field campaign in 2019 using field campaign observations, ERA5, and satellite precipitation. We identified three EWs during the OTREC period using precipitation and dynamical fields. Composite analysis shows that the convectively active part of the EW enhances ITCZ deep convection and is associated with an export of column-integrated moist static energy (MSE) by vertical advection. The subsequent convectively suppressed, anticyclonic part of the EW produces an increase of moisture and column-integrated MSE by horizontal advection that likely enhances shallow convection and the shallow overturning flow at 850 hPa over the southern part of the ITCZ. Therefore, EWs appear to strongly modulate shallow and deep circulations in the east Pacific ITCZ.

    « less
  3. The sea surface temperature (SST) contrast between the Northern Hemisphere (NH) and Southern Hemisphere (SH) influences the location of the intertropical convergence zone (ITCZ) and the intensity of the monsoon systems. This study examines the contributions of external forcing and unforced internal variability to the interhemispheric SST contrast in HadSST3 and ERSSTv5 observations, and 10 models from phase 5 of the Coupled Model Intercomparison Project (CMIP5) from 1881 to 2012. Using multimodel mean fingerprints, a significant influence of anthropogenic, but not natural, forcing is detected in the interhemispheric SST contrast, with the observed response larger than that of the modelmore »mean in ERSSTv5. The forced response consists of asymmetric NH–SH SST cooling from the mid-twentieth century to around 1980, followed by opposite NH–SH SST warming. The remaining best-estimate residual or unforced component is marked by NH–SH SST maxima in the 1930s and mid-1960s, and a rapid NH–SH SST decrease around 1970. Examination of decadal shifts in the observed interhemispheric SST contrast highlights the shift around 1970 as the most prominent from 1881 to 2012. Both NH and SH SST variability contributed to the shift, which appears not to be attributable to external forcings. Most models examined fail to capture such large-magnitude shifts in their control simulations, although some models with high interhemispheric SST variability are able to produce them. Large-magnitude shifts produced by the control simulations feature disparate spatial SST patterns, some of which are consistent with changes typically associated with the Atlantic meridional overturning circulation (AMOC).

    « less
  4. Abstract This study revisits the superintensity of tropical cyclones (TCs), which is defined as the excess maximum surface wind speed normalized by the corresponding theoretical maximum potential intensity (MPI), based on ensemble axisymmetric numerical simulations, with the focus on the dependence of superintensity on the prescribed sea surface temperature (SST) and the initial environmental atmospheric sounding. Results show a robust decrease of superintensity with increasing SST regardless of being in experiments with an SST-independent initial atmospheric sounding or in those with the SST-dependent initial atmospheric soundings as in nature sorted for the western North Pacific and the North Atlantic. Itmore »is found that the increase in either convective activity (and thus diabatic heating) in the TC outer region or theoretical MPI or both with increasing SST could reduce the superintensity. For a given SST-independent initial atmospheric sounding, the strength of convective activity in the TC outer region increases rapidly with increasing SST due to the rapidly increasing air–sea thermodynamic disequilibrium (and thus potential convective instability) with increasing SST. As a result, the decrease of superintensity with increasing SST in the SST-independent sounding experiments is dominated by the increasing convective activity in the TC outer region and is much larger than that in the SST-dependent sounding experiments, and the TC intensity becomes sub-MPI at relatively high SSTs in the former. Due to the marginal increasing tendency of convective activity in the TC outer region, the decrease of superintensity in the latter is dominated by the increase in theoretical MPI with increasing SST.« less
  5. Abstract This study quantifies the contributions of tropical sea surface temperature (SST) variations during the boreal warm season to the interannual-to-decadal variability in tropical cyclone genesis frequency (TCGF) over the Northern Hemisphere ocean basins. The first seven leading modes of tropical SST variability are found to affect basinwide TCGF in one or more basins, and are related to canonical El Niño–Southern Oscillation (ENSO), global warming (GW), the Pacific meridional mode (PMM), Atlantic multidecadal oscillation (AMO), Pacific decadal oscillation (PDO), and the Atlantic meridional mode (AMM). These modes account for approximately 58%, 50%, and 56% of the variance in basinwide TCGFmore »during 1969–2018 over the North Atlantic (NA), northeast Pacific (NEP), and northwest Pacific (NWP) Oceans, respectively. The SST effect is weak on TCGF variability in the north Indian Ocean. The SST modes dominating TCGF variability differ among the basins: ENSO, the AMO, AMM, and GW are dominant for the NA; ENSO and the AMO for the NEP; and the PMM, interannual AMO, and GW for the NWP. A specific mode may have opposite effects on TCGF in different basins, particularly between the NA and NEP. Sliding-window multiple linear regression analyses show that the SST effects on basinwide TCGF are stable in time in the NA and NWP, but have strengthened since the 1990s in the NEP. The SST effects on local TC genesis and occurrence frequency are also explored, and the underlying physical mechanisms are examined by diagnosing a genesis potential index and its components.« less