Abstract The Li-Sn binary system has been the focus of extensive research because it features Li-rich alloys with potential applications as battery anodes. Our present re-examination of the binary system with a combination of machine learning and ab initio methods has allowed us to screen a vast configuration space and uncover a number of overlooked thermodynamically stable alloys. At ambient pressure, our evolutionary searches identified an additional stable Li3Sn phase with a large BCC-based hR48 structure and a possible high-TLiSn4ground state. By building a simple model for the observed and predicted Li-Sn BCC alloys we constructed an even larger viable hR75 structure at an exotic 19:6 stoichiometry. At 20 GPa, low-symmetry 11:2, 5:1, and 9:2 phases found with our global searches destabilize previously proposed phases with high Li content. The findings showcase the appreciable promise machine-learning interatomic potentials hold for accelerating ab initio prediction of complex materials.
more »
« less
MAISE: Construction of neural network interatomic models and evolutionary structure optimization
Module for ab initio structure evolution (MAISE) is an open-source package for materials modeling and prediction. The code’s main feature is an automated generation of neural network (NN) interatomic potentials for use in global structure searches. The systematic construction of Behler–Parrinello-type NN models approximating ab initio energy and forces relies on two approaches introduced in our recent studies. An evolutionary sampling scheme for generating reference structures improves the NNs’ mapping of regions visited in unconstrained searches, while a stratified training approach enables the creation of standardized NN models for multiple elements. A more flexible NN architecture proposed here expands the applicability of the stratified scheme for an arbitrary number of elements. The full workflow in the NN development is managed with a customizable ‘MAISE-NET’ wrapper written in Python. The global structure optimization capability in MAISE is based on an evolutionary algorithm applicable for nanoparticles, films, and bulk crystals. A multitribe extension of the algorithm allows for an efficient simultaneous optimization of nanoparticles in a given size range. Implemented structure analysis functions include fingerprinting with radial distribution functions and finding space groups with the SPGLIB tool. This work overviews MAISE’s available features, constructed models, and confirmed predictions.
more »
« less
- Award ID(s):
- 1821815
- PAR ID:
- 10289003
- Date Published:
- Journal Name:
- Computer physics communications
- Volume:
- 259
- ISSN:
- 1879-2944
- Page Range / eLocation ID:
- 107679
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Single-Particle Reconstruction (SPR) in Cryo-Electron Microscopy (cryo-EM) is the task of estimating the 3D structure of a molecule from a set of noisy 2D projections, taken from unknown viewing directions. Many algorithms for SPR start from an initial reference molecule, and alternate between refining the estimated viewing angles given the molecule, and refining the molecule given the viewing angles. This scheme is called iterative refinement. Reliance on an initial, user-chosen reference introduces model bias, and poor initialization can lead to slow convergence. Furthermore, since no ground truth is available for an unsolved molecule, it is difficult to validate the obtained results. This creates the need for high quality ab initio models that can be quickly obtained from experimental data with minimal priors, and which can also be used for validation. We propose a procedure to obtain such an ab initio model directly from raw data using Kam's autocorrelation method. Kam's method has been known since 1980, but it leads to an underdetermined system, with missing orthogonal matrices. Until now, this system has been solved only for special cases, such as highly symmetric molecules or molecules for which a homologous structure was already available. In this paper, we show that knowledge of just two clean projections is sufficient to guarantee a unique solution to the system. This system is solved by an optimization-based heuristic. For the first time, we are then able to obtain a low-resolution ab initio model of an asymmetric molecule directly from raw data, without 2D class averaging and without tilting. Numerical results are presented on both synthetic and experimental data.more » « less
-
null (Ed.)Abstract Objective-driven adaptive sampling is a widely used tool for the optimization of deterministic black-box functions. However, the optimization of stochastic simulation models as found in the engineering, biological, and social sciences is still an elusive task. In this work, we propose a scalable adaptive batch sampling scheme for the optimization of stochastic simulation models with input-dependent noise. The developed algorithm has two primary advantages: (i) by recommending sampling batches, the designer can benefit from parallel computing capabilities, and (ii) by replicating of previously observed sampling locations the method can be scaled to higher-dimensional and more noisy functions. Replication improves numerical tractability as the computational cost of Bayesian optimization methods is known to grow cubicly with the number of unique sampling locations. Deciding when to replicate and when to explore depends on what alternative minimizes the posterior prediction accuracy at and around the spatial locations expected to contain the global optimum. The algorithm explores a new sampling location to reduce the interpolation uncertainty and replicates to improve the accuracy of the mean prediction at a single sampling location. Through the application of the proposed sampling scheme to two numerical test functions and one real engineering problem, we show that we can reliably and efficiently find the global optimum of stochastic simulation models with input-dependent noise.more » « less
-
We present the problem of generating a many-nucleon basis in [Formula: see text]-scheme for ab initio nuclear structure calculations in a symmetry-adapted no-core shell model framework. We first discuss and analyze the basis construction algorithm whose baseline implementation quickly becomes a significant bottleneck for large model spaces and heavier nuclei. The outcomes of this analysis are utilized to propose a new scalable version of the algorithm. Its performance is consequently studied empirically using the Blue Waters supercomputer. The measurements show significant acceleration achieved with over two orders of magnitude speedups realized for larger model spaces.more » « less
-
An exploration of the “on-the-fly” nonadiabatic couplings (NACs) for nonradiative relaxation and recombination of excited states in 2D Dion–Jacobson (DJ) lead halide perovskites (LHPs) is accelerated by a machine learning approach. Specifically, ab initio molecular dynamics (AIMD) of nanostructures composed of heavy elements is performed with the use of machine-learning force-fields (MLFFs), as implemented in the Vienna Ab initio Simulation Package (VASP). The force field parametrization is established using on-the-fly learning, which continuously builds a force field using AIMD data. At each time step of the molecular dynamics (MD) simulation, the total energy and forces are predicted based on the MLFF and if the Bayesian error estimate exceeds a threshold, an ab initio calculation is performed, which is used to construct a new force field. Model training of MLFF and evaluation were performed for a range of DJ-LHP models of different thicknesses and halide compositions. The MLFF-MD trajectories were evaluated against pure AIMD trajectories to assess the level of discrepancy and error accumulation. To examine the practical effectiveness of this approach, we have used the MLFF-based MD trajectories to compute NAC and excited-state dynamics. At each stage, results based on machine learning are compared to traditional ab initio based electronic dissipative dynamics. We find that MLFF-MD provides comparable results to AIMDs when MLFF is trained in an NPT ensemble.more » « less
An official website of the United States government

