skip to main content


Title: MAISE: Construction of neural network interatomic models and evolutionary structure optimization
Module for ab initio structure evolution (MAISE) is an open-source package for materials modeling and prediction. The code’s main feature is an automated generation of neural network (NN) interatomic potentials for use in global structure searches. The systematic construction of Behler–Parrinello-type NN models approximating ab initio energy and forces relies on two approaches introduced in our recent studies. An evolutionary sampling scheme for generating reference structures improves the NNs’ mapping of regions visited in unconstrained searches, while a stratified training approach enables the creation of standardized NN models for multiple elements. A more flexible NN architecture proposed here expands the applicability of the stratified scheme for an arbitrary number of elements. The full workflow in the NN development is managed with a customizable ‘MAISE-NET’ wrapper written in Python. The global structure optimization capability in MAISE is based on an evolutionary algorithm applicable for nanoparticles, films, and bulk crystals. A multitribe extension of the algorithm allows for an efficient simultaneous optimization of nanoparticles in a given size range. Implemented structure analysis functions include fingerprinting with radial distribution functions and finding space groups with the SPGLIB tool. This work overviews MAISE’s available features, constructed models, and confirmed predictions.  more » « less
Award ID(s):
1821815
NSF-PAR ID:
10289003
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Computer physics communications
Volume:
259
ISSN:
1879-2944
Page Range / eLocation ID:
107679
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The Li-Sn binary system has been the focus of extensive research because it features Li-rich alloys with potential applications as battery anodes. Our present re-examination of the binary system with a combination of machine learning and ab initio methods has allowed us to screen a vast configuration space and uncover a number of overlooked thermodynamically stable alloys. At ambient pressure, our evolutionary searches identified an additional stable Li3Sn phase with a large BCC-based hR48 structure and a possible high-TLiSn4ground state. By building a simple model for the observed and predicted Li-Sn BCC alloys we constructed an even larger viable hR75 structure at an exotic 19:6 stoichiometry. At 20 GPa, low-symmetry 11:2, 5:1, and 9:2 phases found with our global searches destabilize previously proposed phases with high Li content. The findings showcase the appreciable promise machine-learning interatomic potentials hold for accelerating ab initio prediction of complex materials.

     
    more » « less
  2. Single-Particle Reconstruction (SPR) in Cryo-Electron Microscopy (cryo-EM) is the task of estimating the 3D structure of a molecule from a set of noisy 2D projections, taken from unknown viewing directions. Many algorithms for SPR start from an initial reference molecule, and alternate between refining the estimated viewing angles given the molecule, and refining the molecule given the viewing angles. This scheme is called iterative refinement. Reliance on an initial, user-chosen reference introduces model bias, and poor initialization can lead to slow convergence. Furthermore, since no ground truth is available for an unsolved molecule, it is difficult to validate the obtained results. This creates the need for high quality ab initio models that can be quickly obtained from experimental data with minimal priors, and which can also be used for validation. We propose a procedure to obtain such an ab initio model directly from raw data using Kam's autocorrelation method. Kam's method has been known since 1980, but it leads to an underdetermined system, with missing orthogonal matrices. Until now, this system has been solved only for special cases, such as highly symmetric molecules or molecules for which a homologous structure was already available. In this paper, we show that knowledge of just two clean projections is sufficient to guarantee a unique solution to the system. This system is solved by an optimization-based heuristic. For the first time, we are then able to obtain a low-resolution ab initio model of an asymmetric molecule directly from raw data, without 2D class averaging and without tilting. Numerical results are presented on both synthetic and experimental data. 
    more » « less
  3. Iterative neural networks (INN) are rapidly gaining attention for solving inverse problems in imaging, image processing, and computer vision. INNs combine regression NNs and an iterative model-based image reconstruction (MBIR) algorithm, often leading to both good generalization capability and outperforming reconstruction quality over existing MBIR optimization models. This paper proposes the first fast and convergent INN architecture, Momentum-Net, by generalizing a block-wise MBIR algorithm that uses momentum and majorizers with regression NNs. For fast MBIR, Momentum-Net uses momentum terms in extrapolation modules, and noniterative MBIR modules at each iteration by using majorizers, where each iteration of Momentum-Net consists of three core modules: image refining, extrapolation, and MBIR. Momentum-Net guarantees convergence to a fixed-point for general differentiable (non)convex MBIR functions (or data-fit terms) and convex feasible sets, under two asymptomatic conditions. To consider data-fit variations across training and testing samples, we also propose a regularization parameter selection scheme based on the “spectral spread” of majorization matrices. Numerical experiments for light-field photography using a focal stack and sparse-view computational tomography demonstrate that, given identical regression NN architectures, Momentum-Net significantly improves MBIR speed and accuracy over several existing INNs; it significantly improves reconstruction quality compared to a state-of-the-art MBIR method in each application 
    more » « less
  4. With the motivation of searching for new superconductors in the Mg–B system, we performed ab initio evolutionary searches for all the stable compounds in this binary system in the pressure range of 0–200 GPa. We found previously unknown, yet thermodynamically stable, compositions MgB 3 and Mg 3 B 10 . Experimentally known MgB 2 is stable in the entire pressure range 0–200 GPa, while MgB 7 and MgB 12 are stable at pressures below 90 GPa and 35 GPa, respectively. We predict a reentrant behavior for MgB 4 , which becomes unstable against decomposition into MgB 2 and MgB 7 at 4 GPa and then becomes stable above 61 GPa. We find ubiquity of phases with boron sandwich structures analogous to the AlB 2 -type structure. However, with the exception of MgB 2 , all other magnesium borides have low electron–phonon coupling constants λ of 0.32–0.39 and are predicted to have T c below 3 K. 
    more » « less
  5. Cone penetration testing (CPT) is a preferred method for characterizing soil profiles for evaluating seismic liquefaction triggering potential. However, CPT has limitations in characterizing highly stratified profiles because the measured tip resistance (𝑞𝑐 ) of the cone penetrometer is influenced by the properties of the soils above and below the tip. This results in measured 𝑞𝑐 values that appear ‘‘blurred’’ at sediment layer boundaries, inhibiting our ability to characterize thinly layered strata that are potentially liquefiable. Removing this ‘‘blur’’ has been previously posed as a continuous optimization problem, but in some cases this methodology has been less efficacious than desired. Thus, we propose a new approach to determine the corrected 𝑞𝑐 values (i.e. values that would be measured in a stratum absent of thin-layer effects) from measured values. This new numerical optimization algorithm searches for soil profiles with a finite number of layers which can automatically be added or removed as needed. This algorithm is provided as open-source MATLAB software. It yields corrected 𝑞𝑐 values when applied to computer-simulated and calibration chamber CPT data. We compare two versions of the new algorithm that numerically optimize different functions, one of which uses a logarithm to refine fine-scale details, but which requires longer calculation times to yield improved corrected 𝑞𝑐 profiles. 
    more » « less