skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Assessing the degree of plug flow in oxidation flow reactors (OFRs): a study on a potential aerosol mass (PAM) reactor
Abstract. Oxidation flow reactors (OFRs) have been developed to achieve high degrees of oxidant exposures over relatively short space times (defined as the ratio of reactor volume to the volumetric flow rate). While, due to their increased use, attention has been paid to their ability to replicate realistic tropospheric reactions by modeling the chemistry inside the reactor, there is a desire to customize flow patterns. This work demonstrates the importance of decoupling tracer signal of the reactor from that of the tubing when experimentally obtaining these flow patterns. We modeled the residence time distributions (RTDs) inside the Washington University Potential Aerosol Mass (WU-PAM) reactor, an OFR, for a simple set of configurations by applying the tank-in-series (TIS) model, a one-parameter model, to a deconvolution algorithm. The value of the parameter, N, is close to unity for every case except one having the highest space time. Combined, the results suggest that volumetric flow rate affects mixing patterns more than use of our internals. We selected results from the simplest case, at 78 s space time with one inlet and one outlet, absent of baffles and spargers, and compared the experimental F curve to that of a computational fluid dynamics (CFD) simulation. The F curves, which represent the cumulative time spent in the reactor by flowing material, match reasonably well. We value that the use of a small aspect ratio reactor such as the WU-PAM reduces wall interactions; however sudden apertures introduce disturbances in the flow, and suggest applying the methodology of tracer testing described in this work to investigate RTDs in OFRs to observe the effect of modified inlets, outlets and use of internals prior to application (e.g., field deployment vs. laboratory study).  more » « less
Award ID(s):
1437933 1236865
PAR ID:
10289030
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Atmospheric Measurement Techniques
Volume:
11
Issue:
3
ISSN:
1867-8548
Page Range / eLocation ID:
1741 to 1756
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. M.A. Bañares E. Groppo, PhD (Ed.)
    Scale-up of Fischer-Tropsch (F-T) synthesis using microreactors is very important for a paradigm shift in the production of fuels and chemicals. The scalability of microreactors for F-T Synthesis was experimentally evaluated using 3D printed stainless steel microreactors, containing seven microchannels of dimensions 1000 µm × 1000 µm × 5cms. Mesoporous silica (KIT-6), with high surface area, containing ordered mesoporous structure was used to incorporate 10% cobalt and 5% ruthenium using a one-pot hydrothermal method. Bimetallic Co-Ru-KIT-6 catalyst was used for scale-up of F-T Synthesis. The performance of the catalysts was evaluated and examined for three different scale-up configurations (stand-alone, two, and four microreactors assembled in parallel) at both atmospheric pressure and 20 bar at F-T operating temperature of 240 °C using a syngas molar ratio (H2:CO) of 2. All three configurations of microreactors yielded not only comparable CO conversion (85.6–88.4%) and methane selectivity (~14%) but also similar selectivity towards lower gaseous hydrocarbons like ethane, propane, and butane (6.23–9.4%) observed in atmospheric F-T Synthesis. The overall selectivity to higher hydrocarbons, C5 + is in the range of 75–82% at 20 bars. A CFD model was used to investigate the effect of different design features and numbering up approaches on the performance of the microchannel reactor. The effect of the reactor inlet, the mixing internals and the channel designs on the dead zone %, the quality index factor, the cooling requirement and the maximum dimensionless temperature within the microreactor were quantified. There is no significant effect of increasing the channel width on the microreactor performance and operation of the microchannel reactor at lower Nusselt number that results in higher CO conversion. Increasing the channel width reduced the maximum temperature exhibited in the channel. Finally, the effect of increasing the y/x stacking ratio, i.e. having more reactor units in parallel compared to series, was investigated. Increasing the y/x ratio increased the cooling requirement and the maximum dimensionless temperature increase within the unit decreased the productivity. To minimize the productivity losses, numbering up in series is the better approach; however further analysis must be done to delineate heat removal requirements. 
    more » « less
  2. AbstractWe investigate the feasibility of in-laboratory tomographic X-ray particle tracking velocimetry (TXPTV) and consider creeping flows with nearly density matched flow tracers. Specifically, in these proof-of-concept experiments we examined a Poiseuille flow, flow through porous media and a multiphase flow with a Taylor bubble. For a full 360$$^\circ$$ computed tomography (CT) scan we show that the specially selected 60 micron tracer particles could be imaged in less than 3 seconds with a signal-to-noise ratio between the tracers and the fluid of 2.5, sufficient to achieve proper volumetric segmentation at each time step. In the pipe flow, continuous Lagrangian particle trajectories were obtained, after which all the standard techniques used for PTV or PIV (taken at visible wave lengths) could also be employed for TXPTV data. And, with TXPTV we can examine flows inaccessible with visible wave lengths due to opaque media or numerous refractive interfaces. In the case of opaque porous media we were able to observe material accumulation and pore clogging, and for flow with Taylor bubble we can trace the particles and hence obtain velocities in the liquid film between the wall and bubble, with thickness of liquid film itself also simultaneously obtained from the volumetric reconstruction after segmentation. While improvements in scan speed are anticipated due to continuing improvements in CT system components, we show that for the flows examined even the presently available CT systems could yield quantitative flow data with the primary limitation being the quality of available flow tracers. Graphic abstract 
    more » « less
  3. Abstract In this paper, viscous incompressible hydromagnetic flow around a sphere has been investigated by considering the penetration of the magnetic field inside it. Earlier researchers have found it difficult because it not only adds an extra equation to the system of governing equations but also needs a proper matching of the components of the magnetic fields at the interface. However, using a higher‐order compact finite difference scheme, we have successfully solved the governing highly nonlinear and coupled system of partial differential equations and have obtained converged solutions throughout the domain of the parameter space. In this novel numerical investigation, we have calculated the magnetic field throughout the whole domain, that is, both inside the sphere and within the fluid, with a suitable matching at the interface–a feature that has allowed us to capture the actual interactions occurring between the fluid flow and the magnetic field and unfurl several new characteristics of scientific and technological value. In fact, we have found that the magnetic field penetrating inside the sphere can effectively cause the critical value of Reynolds number to increase and can help to suppress flow separation more effectively than otherwise. 
    more » « less
  4. Many studies have investigated the conversion of biomass derivatives to value-added products. However, the influence of different factors on the reaction outcomes of these often-complex systems is not well understood. Herein, a statistical design of experiments—specifically, response surface methodology—is applied to the glycerol electrooxidation reaction in a flow electrolyzer. Four operational variables (glycerol concentration, NaOH concentration, flow rate, and catalyst loading) were investigated for their effects on measurable responses of the electrochemical reaction: current density and Faradaic efficiency to a given product. Independent optimizations of current density and Faradaic efficiency, as well as simultaneous optimization of both, were investigated. Each optimization was evaluated using response surface coefficients to analyze sensitivity and simulated runs to visualize the parameter space. These evaluations revealed contradictions in operating conditions required to simultaneously maximize current density and Faradaic efficiency to C3products glycerate and lactate, leading to low current densities and Faradaic efficiencies. However, simultaneously maximizing current density and Faradaic efficiency to C1product formate led to high current densities and Faradaic efficiencies. These insights guide tuning GEOR production to maximize overall reactor performance. Furthermore, this study outlines a framework for experimental evaluation and optimization of other electrolysis chemistries. 
    more » « less
  5. Ladle metallurgy serves as a crucial component of the steelmaking industry, where it plays a pivotal role in manipulating the molten steel to exercise precise control over its composition and properties. Turbulence in ladle metallurgy influences various important aspects of the steelmaking process, including mixing and distribution of additives, alongside the transport and removal of inclusions within the ladle. Consequently, gaining a clear understanding of the stirred flow field holds the potential of optimizing ladle design, improving control strategies, and enhancing the overall efficiency and steel quality. In this project, an advanced Particle-Tracking-Velocimetry system known as “Shake-the-Box” is implemented on a cylindrical water ladle model while compressed air injections through two circular plugs positioned at the bottom of the model are employed to actively stir the flow. To mitigate the particle images distortion caused by the cylindrical plexi-glass walls, the method of refractive matching is utilized with an outer polygon tank filled with a sodium iodide solution. The volumetric flow measurement is achieved on a 6 × 6 × 2 cm domain between the two plugs inside the cylindrical container while the flow rate of gas injection is set from 0.1 to 0.4 L per minute. The volumetric flow field result suggests double gas injection at low flow rate (0.1 L per minute) produce the least disturbed flow while highly disturbed and turbulent flow can be created at higher flow rate of gas injection. 
    more » « less