skip to main content


Title: Impact of Land Use Changes and Habitat Fragmentation on the Eco-epidemiology of Tick-Borne Diseases
Abstract The incidence of tick-borne diseases has increased in recent decades and accounts for the majority of vector-borne disease cases in temperate areas of Europe, North America, and Asia. This emergence has been attributed to multiple and interactive drivers including changes in climate, land use, abundance of key hosts, and people’s behaviors affecting the probability of human exposure to infected ticks. In this forum paper, we focus on how land use changes have shaped the eco-epidemiology of Ixodes scapularis-borne pathogens, in particular the Lyme disease spirochete Borrelia burgdorferi sensu stricto in the eastern United States. We use this as a model system, addressing other tick-borne disease systems as needed to illustrate patterns or processes. We first examine how land use interacts with abiotic conditions (microclimate) and biotic factors (e.g., host community composition) to influence the enzootic hazard, measured as the density of host-seeking I. scapularis nymphs infected with B. burgdorferi s.s. We then review the evidence of how specific landscape configuration, in particular forest fragmentation, influences the enzootic hazard and disease risk across spatial scales and urbanization levels. We emphasize the need for a dynamic understanding of landscapes based on tick and pathogen host movement and habitat use in relation to human resource provisioning. We propose a coupled natural-human systems framework for tick-borne diseases that accounts for the multiple interactions, nonlinearities and feedbacks in the system and conclude with a call for standardization of methodology and terminology to help integrate studies conducted at multiple scales.  more » « less
Award ID(s):
1924061
NSF-PAR ID:
10289832
Author(s) / Creator(s):
; ;
Editor(s):
Reisen, William
Date Published:
Journal Name:
Journal of Medical Entomology
Volume:
58
Issue:
4
ISSN:
0022-2585
Page Range / eLocation ID:
1546 to 1564
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Aim

    Prediction of novel reservoirs of zoonotic pathogens would be improved by the identification of interspecific drivers of host competence (i.e., the ability to transmit pathogens to new hosts or vectors). Tick‐borne pathogens can provide a useful model system, because larvae become infected only when feeding on a competent host during their first blood meal. For tick‐borne diseases, competence has been studied best forBorrelia burgdorferisensu lato (Bbsl), which causes Lyme borreliosis. Major reservoirs include several small mammal species, but birds might play an under‐recognized role in human risk given their ability to disperse infected ticks across large spatial scales. Here, we provide a global synthesis of the ecological and evolutionary factors that determine the ability of bird species to infect larval ticks withBbsl.

    Location

    Global.

    Time period

    1983–2019.

    Major taxa studied

    Birds.

    Methods

    We compiled a dataset ofBbsl competence across 183 bird species and applied meta‐analysis, phylogenetic factorization and boosted regression trees to describe spatial and temporal patterns in competence, characterize its phylogenetic distribution across birds, reconstruct its evolution and evaluate the trait profiles associated with competent avian species.

    Results

    Half of the sampled bird species show evidence of competence forBbsl. Competence displays moderate phylogenetic signal, has evolved multiple times across bird species and is pronounced in the genusTurdus. Trait‐based analyses distinguished competent birds with 80% accuracy and showed that such species have low baseline corticosterone, exist on both ends of the pace‐of‐life continuum, breed and winter at high latitudes and have broad migratory movements into their breeding range. We used these trait profiles to predict various likely but unsampled competent species, including novel concentrations of avian reservoirs within the Neotropics.

    Main conclusion

    Our results can generate new hypotheses for how birds contribute to the dynamics of tick‐borne pathogens and help to prioritize surveillance of likely but unsampled competent birds. Our findings also emphasize that birds display under‐recognized variation in their contributions to enzootic cycles ofBbsl and the broader need to consider competence in ecological and predictive studies of multi‐host pathogens.

     
    more » « less
  2. Lyme disease is the most common vector-borne disease in the United States impacting the Northeast and Midwest at the highest rates. Recently, it has become established in southeastern and south-central regions of Canada. In these regions, Lyme disease is caused by Borrelia burgdorferi, which is transmitted to humans by an infected Ixodes scapularis tick. Understanding the parasite-host interaction is critical as the white-footed mouse is one of the most competent reservoir for B. burgdorferi. The cycle of infection is driven by tick larvae feeding on infected mice that molt into infected nymphs and then transmit the disease to another susceptible host such as mice or humans. Lyme disease in humans is generally caused by the bite of an infected nymph. The main aim of this investigation is to study how diapause delays and demographic and seasonal variability in tick births, deaths, and feedings impact the infection dynamics of the tick-mouse cycle. We model tick-mouse dynamics with fixed diapause delays and more realistic Erlang distributed delays through delay and ordinary differential equations (ODEs). To account for demographic and seasonal variability, the ODEs are generalized to a continuous-time Markov chain (CTMC). The basic reproduction number and parameter sensitivity analysis are computed for the ODEs. The CTMC is used to investigate the probability of Lyme disease emergence when ticks and mice are introduced, a few of which are infected. The probability of disease emergence is highly dependent on the time and the infected species introduced. Infected mice introduced during the summer season result in the highest probability of disease emergence. 
    more » « less
  3. Globally, zoonotic vector-borne diseases are on the rise and understanding their complex transmission cycles is pertinent to mitigating disease risk. In North America, Lyme disease is the most commonly reported vector-borne disease and is caused by transmission of Borrelia burgdorferi sensu lato (s.l.) from Ixodes spp. ticks to a diverse group of vertebrate hosts. Small mammal reservoir hosts are primarily responsible for maintenance of B. burgdorferi s.l. across the United States. Never- theless, birds can also be parasitized by ticks and are capable of infection with B. burgdorferi s.l. but their role in B. burgdorferi s.l. transmission dynamics is understudied. Birds could be important in both the maintenance and spread of B. burgdorferi s.l. and ticks because of their high mobility and shared habitat with important mammalian reservoir hosts. This study aims to better understand the role of avian hosts in tick-borne zoonotic disease transmission cycles in the western United States. We surveyed birds, mammals, and ticks at nine sites in northern California for B. burgdorferi s.l. infection and collected data on other metrics of host community composition such as abundance and diversity of birds, small mammals, lizards, predators, and ticks. We found 22.8% of birds infected with B. burgdorferi s.l. and that the likelihood of avian B. burgdorferi s.l. infection was significantly associated with local host community composition and pathogen prevalence in California. Addition- ally, we found an average tick burden of 0.22 ticks per bird across all species. Predator and lizard abundances were significant predictors of avian tick infestation. These results indicate that birds are relevant hosts in the local B. burgdorferi s.l. transmission cycle in the western United States and quantifying their role in the spread and maintenance of Lyme disease requires further research. 
    more » « less
  4. Lyme disease (LD), the most prevalent tick-borne disease of humans in the Northern Hemisphere, is caused by the spirochetal bacterium of Borreliella burgdorferi ( Bb ) sensu lato complex. In nature, Bb spirochetes are continuously transmitted between Ixodes ticks and mammalian or avian reservoir hosts. Peromyscus leucopus mice are considered the primary mammalian reservoir of Bb in the United States. Earlier studies demonstrated that experimentally infected P. leucopus mice do not develop disease. In contrast, C3H mice, a widely used laboratory strain of Mus musculus in the LD field, develop severe Lyme arthritis. To date, the exact tolerance mechanism of P. leucopus mice to Bb -induced infection remains unknown. To address this knowledge gap, the present study has compared spleen transcriptomes of P. leucopus and C3H/HeJ mice infected with Bb strain 297 with those of their respective uninfected controls. Overall, the data showed that the spleen transcriptome of Bb -infected P. leucopus mice was much more quiescent compared to that of the infected C3H mice. To date, the current investigation is one of the few that have examined the transcriptome response of natural reservoir hosts to Borreliella infection. Although the experimental design of this study significantly differed from those of two previous investigations, the collective results of the current and published studies have consistently demonstrated very limited transcriptomic responses of different reservoir hosts to the persistent infection of LD pathogens. Importance The bacterium Borreliella burgdorferi ( Bb ) causes Lyme disease, which is one of the emerging and highly debilitating human diseases in countries of the Northern Hemisphere. In nature, Bb spirochetes are maintained between hard ticks of Ixodes spp. and mammals or birds. In the United States, the white-footed mouse, Peromyscus leucopus , is one of the main Bb reservoirs. In contrast to humans and laboratory mice (e.g., C3H mice), white-footed mice rarely develop clinical signs (disease) despite being (persistently) infected with Bb . How the white-footed mouse tolerates Bb infection is the question that the present study has attempted to address. Comparisons of genetic responses between Bb -infected and uninfected mice demonstrated that, during a long-term Bb infection, C3H mice reacted much stronger, whereas P. leucopus mice were relatively unresponsive. 
    more » « less
  5. Cases of tick-borne diseases have been steadily increasing in the USA, owing in part to tick range expansion, land cover and associated host population changes, and habitat fragmentation. However, the relative importance of these and other potential drivers remain poorly understood within this complex disease system. Ticks are ectotherms with multi-host lifecycles, which makes them sensitive to changes in the physical environment and the ecological community. Here, we describe data collected by the National Ecological Observatory Network on tick abundance, diversity and pathogen infection. Ticks are collected using drag or flag methods multiple times in a growing season at 46 terrestrial sites across the USA. Ticks are identified and enumerated by a professional taxonomist, and a subset of nymphs are PCR-tested for various tick-borne pathogens. These data will enable multiscale analyses to better understand how drivers of tick dynamics and pathogen prevalence may shift with climate or land-use change. 
    more » « less