Liquid crystal elastomers (LCEs) are of interest for applications such as soft robotics and shape‐morphing devices. Among the different actuation mechanisms, light offers advantages such as spatial and local control of actuation via the photothermal effect. However, the unwanted aggregation of the light‐absorbing nanoparticles in the LCE matrix will limit the photothermal response speed, actuation performance, and repeatability. Herein, a near‐infrared‐responsive LCE composite consisting of up to 0.20 wt% poly(ethylene glycol)‐modified gold nanorods (AuNRs) without apparent aggregation is demonstrated. The high Young's modulus, 20.3 MPa, and excellent photothermal performance render repeated and fast actuation of the films (actuation within 5 s and recovery in 2 s) when exposed to 800 nm light at an average output power of ≈1.0 W cm−2, while maintaining a large actuation strain (56%). Further, it is shown that the same sheet of AuNR/LCE film (100 µm thick) can be morphed into different shapes simply by varying the motifs of the photomasks.
Fibers capable of generating axial contraction are commonly seen in nature and engineering applications. Despite the broad applications of fiber actuators, it is still very challenging to fabricate fiber actuators with combined large actuation strain, fast response speed, and high power density. Here, we report the fabrication of a liquid crystal elastomer (LCE) microfiber actuators using a facile electrospinning technique. Owing to the extremely small size of the LCE microfibers, they can generate large actuation strain (~60 percent) with a fast response speed (<0.2 second) and a high power density (400 watts per kilogram), resulting from the nematic-isotropic phase transition of liquid crystal mesogens. Moreover, no performance degradation is detected in the LCE microfibers after 106cycles of loading and unloading with the maximum strain of 20 percent at high temperature (90 degree Celsius). The small diameter of the LCE microfiber also results in a self-oscillatory behavior in a steady temperature field. In addition, with a polydopamine coating layer, the actuation of the electrospun LCE microfiber can be precisely and remotely controlled by a near-infrared laser through photothermal effect. Using the electrospun LCE microfiber actuator, we have successfully constructed a microtweezer, a microrobot, and a light-powered microfluidic pump.
more » « less- Award ID(s):
- 1762560
- NSF-PAR ID:
- 10289899
- Publisher / Repository:
- American Association for the Advancement of Science (AAAS)
- Date Published:
- Journal Name:
- Science Robotics
- Volume:
- 6
- Issue:
- 57
- ISSN:
- 2470-9476
- Page Range / eLocation ID:
- Article No. eabi9704
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Coaxial‐Spun Hollow Liquid Crystal Elastomer Fiber as a Versatile Platform for Functional Composites
Abstract The design and engineering of liquid crystal elastomers (LCE) composites for enhanced multifunctionality and responsiveness is highly desired. Here, a hollow LCE (h‐LCE) fiber fabricated via coaxial spinning, enabling the straightforward yet effective creation of functional LCE composites, is reported. Inspired by the fiber‐tubule architecture in skeletal muscles, the hollow fiber features an LCE outer shell for programmable actuation and an inner channel allowing for the integration of a variety of functional media. Thus, the h‐LCE fiber can serve as a versatile platform for multifunctionalities in LCE composites. With this unique design strategy, h‐LCE fibers are fabricated with lengths exceeding 3 meters in the lab with outer and inner diameters as small as 250 mm and 120 µm, respectively. The versatility of these h‐LCE fibers across various applications are further demonstrated, from fast‐response stiffness‐tunable actuators by integrating water flow as triggering media and shape memory polymer (SMP) for enhanced mechanical properties, to electrically driven actuating systems through the incorporation of liquid metal, and actuating light‐guides by combining SMP and PDMS optical fiber. The conception of h‐LCE fiber not only advances the design of multifunctional LCE composites but also paves the way for their application in soft robotics, artificial muscles, and beyond.
-
Soft robots, with their agile locomotion and responsiveness to environment, have attracted great interest in recent years. Liquid crystal elastomers (LCEs), known for their reversible and anisotropic deformation, are promising candidates as embedded intelligent actuators in soft robots. So far, most studies on LCEs have focused on achieving complex deformation in thin films over centimeter‐scale areas with relatively small specific energy densities. Herein, using an extrusion process, meter‐long LCE composite filaments that are responsive to both infrared light and electrical fields are fabricated. In the composite filaments, a small quantity of cellulose nanocrystals (CNCs) is incorporated to facilitate the alignment of liquid crystal molecules along the long axis of the filament. Up to 2 wt% carbon nanotubes (CNTs) is introduced into a LCE matrix without aggregation, which in turn greatly improves the mechanical property of filaments and their actuation speed, where the Young's modulus along the long axis reaches 40 MPa, the electrothermal response time is within 10 s. The maximum work capacity is 38 J kg−1with 2 wt% CNT loading. Finally, shape transformation and locomotion in several soft robotics systems achieved by the dual‐responsive LCE/CNT composite filament actuators are demonstrated.
-
Abstract Elephant trunks are capable of complex, multimodal deformations, allowing them to perform task‐oriented high‐degree‐of‐freedom (DOF) movements pertinent to the field of soft actuators. Despite recent advances, most soft actuators can only achieve one or two deformation modes, limiting their motion range and applications. Inspired by the elephant trunk musculature, a liquid crystal elastomer (LCE)‐based multi‐fiber design strategy is proposed for soft robotic arms in which a discrete number of artificial muscle fibers can be selectively actuated, achieving multimodal deformations and transitions between modes for continuous movements. Through experiments, finite element analysis (FEA), and a theoretical model, the influence of LCE fiber design on the achievable deformations, movements, and reachability of trunk‐inspired robotic arms is studied. Fiber geometry is parametrically investigated for 2‐fiber robotic arms and the tilting and bending of these arms is characterized. A 3‐fiber robotic arm is additionally studied with a simplified fiber arrangement analogous to that of an actual elephant trunk. The remarkably broad range of deformations and the reachability of the arm are discussed, alongside transitions between deformation modes for functional movements. It is anticipated that this design and actuation strategy will serve as a robust method to realize high‐DOF soft actuators for various engineering applications.
-
Abstract Transversely curved composite shells of liquid crystal elastomer and polyethylene terephthalate with innervated electrodes present millisecond‐scale actuation with ≈200 mW electrical power inputs at low voltages (≈1 V). The molecular orientation is aligned to direct the thermomechanical work‐content to evert the native curvature. When powered, the curved structure initially remains latent and builds up strain energy. Thereafter, the work content is released in an ms‐scale impulse. The thin‐film actuators are powered against opposing loads to perform up to 10−5J of work. High speed imaging reveals tip velocities of several 100 mm s−1with powers approaching 10−4 J s−1. The design eschews bistability. After snap‐through, when the power is off, the actuator spontaneously resets to its native state. The actuation profiles are functions of the geometry and the electrical pulse patterns. The latency of actuation is reduced by powering the actuators with pulses that trigger snap‐through, allow its reset to the native state, but prevent its cooling to the ambient before subsequent actuation cycles. The actuation is harnessed in sub‐gram scale robots, including water‐strider mimicking configurations and steerable robots that can navigate on compliant (sand) and hard (slippery) surfaces. A viable template for impulsive actuation using frugal electrical power emerges.