skip to main content

Title: Internet-Based Individualized Cognitive Behavioral Therapy for Shift Work Sleep Disorder Empowered by Well-Being Prediction: Protocol for a Pilot Study
Background Shift work sleep disorders (SWSDs) are associated with the high turnover rates of nurses, and are considered a major medical safety issue. However, initial management can be hampered by insufficient awareness. In recent years, it has become possible to visualize, collect, and analyze the work-life balance of health care workers with irregular sleeping and working habits using wearable sensors that can continuously monitor biometric data under real-life settings. In addition, internet-based cognitive behavioral therapy for psychiatric disorders has been shown to be effective. Application of wearable sensors and machine learning may potentially enhance the beneficial effects of internet-based cognitive behavioral therapy. Objective In this study, we aim to develop and evaluate the effect of a new internet-based cognitive behavioral therapy for SWSD (iCBTS). This system includes current methods such as medical sleep advice, as well as machine learning well-being prediction to improve the sleep durations of shift workers and prevent declines in their well-being. Methods This study consists of two phases: (1) preliminary data collection and machine learning for well-being prediction; (2) intervention and evaluation of iCBTS for SWSD. Shift workers in the intensive care unit at Mie University Hospital will wear a wearable sensor that collects biometric data more » and answer daily questionnaires regarding their well-being. They will subsequently be provided with an iCBTS app for 4 weeks. Sleep and well-being measurements between baseline and the intervention period will be compared. Results Recruitment for phase 1 ended in October 2019. Recruitment for phase 2 has started in October 2020. Preliminary results are expected to be available by summer 2021. Conclusions iCBTS empowered with well-being prediction is expected to improve the sleep durations of shift workers, thereby enhancing their overall well-being. Findings of this study will reveal the potential of this system for improving sleep disorders among shift workers. Trial Registration UMIN Clinical Trials Registry UMIN000036122 (phase 1), UMIN000040547 (phase 2); https://tinyurl.com/dkfmmmje, https://upload.umin.ac.jp/cgi-open-bin/ctr_e/ctr_view.cgi?recptno=R000046284 International Registered Report Identifier (IRRID) DERR1-10.2196/24799 « less
Authors:
; ; ; ; ; ; ; ; ; ;
Award ID(s):
1840167
Publication Date:
NSF-PAR ID:
10289915
Journal Name:
JMIR Research Protocols
Volume:
10
Issue:
3
Page Range or eLocation-ID:
e24799
ISSN:
1929-0748
Sponsoring Org:
National Science Foundation
More Like this
  1. Shift workers who are essential contributors to our society, face high risks of poor health and wellbeing. To help with their problems, we collected and analyzed physiological and behavioral wearable sensor data from shift working nurses and doctors, as well as their behavioral questionnaire data and their self-reported daily health and wellbeing labels, including alertness, happiness, energy, health, and stress. We found the similarities and differences between the responses of nurses and doctors. According to the differences in self-reported health and wellbeing labels between nurses and doctors, and the correlations among their labels, we proposed a job-role based multitask and multilabel deep learning model, where we modeled physiological and behavioral data for nurses and doctors simultaneously to predict participants’ next day’s multidimensional self-reported health and wellbeing status. Our model showed significantly better performances than baseline models and previous state-of-the-art models in the evaluations of binary/3-class classification and regression prediction tasks. We also found features related to heart rate, sleep, and work shift contributed to shift workers’ health and wellbeing.
  2. Background The physical and emotional well-being of women is critical for healthy pregnancy and birth outcomes. The Two Happy Hearts intervention is a personalized mind-body program coached by community health workers that includes monitoring and reflecting on personal health, as well as practicing stress management strategies such as mindful breathing and movement. Objective The aims of this study are to (1) test the daily use of a wearable device to objectively measure physical and emotional well-being along with subjective assessments during pregnancy, and (2) explore the user’s engagement with the Two Happy Hearts intervention prototype, as well as understand their experiences with various intervention components. Methods A case study with a mixed design was used. We recruited a 29-year-old woman at 33 weeks of gestation with a singleton pregnancy. She had no medical complications or physical restrictions, and she was enrolled in the Medi-Cal public health insurance plan. The participant engaged in the Two Happy Hearts intervention prototype from her third trimester until delivery. The Oura smart ring was used to continuously monitor objective physical and emotional states, such as resting heart rate, resting heart rate variability, sleep, and physical activity. In addition, the participant self-reported her physical and emotionalmore »health using the Two Happy Hearts mobile app–based 24-hour recall surveys (sleep quality and level of physical activity) and ecological momentary assessment (positive and negative emotions), as well as the Perceived Stress Scale, Center for Epidemiologic Studies Depression Scale, and State-Trait Anxiety Inventory. Engagement with the Two Happy Hearts intervention was recorded via both the smart ring and phone app, and user experiences were collected via Research Electronic Data Capture satisfaction surveys. Objective data from the Oura ring and subjective data on physical and emotional health were described. Regression plots and Pearson correlations between the objective and subjective data were presented, and content analysis was performed for the qualitative data. Results Decreased resting heart rate was significantly correlated with increased heart rate variability (r=–0.92, P<.001). We found significant associations between self-reported responses and Oura ring measures: (1) positive emotions and heart rate variability (r=0.54, P<.001), (2) sleep quality and sleep score (r=0.52, P<.001), and (3) physical activity and step count (r=0.77, P<.001). In addition, deep sleep appeared to increase as light and rapid eye movement sleep decreased. The psychological measures of stress, depression, and anxiety appeared to decrease from baseline to post intervention. Furthermore, the participant had a high completion rate of the components of the Two Happy Hearts intervention prototype and shared several positive experiences, such as an increased self-efficacy and a normal delivery. Conclusions The Two Happy Hearts intervention prototype shows promise for potential use by underserved pregnant women.« less
  3. Background Studies that use ecological momentary assessments (EMAs) or wearable sensors to track numerous attributes, such as physical activity, sleep, and heart rate, can benefit from reductions in missing data. Maximizing compliance is one method of reducing missing data to increase the return on the heavy investment of time and money into large-scale studies. Objective This paper aims to identify the extent to which compliance can be prospectively predicted from individual attributes and initial compliance. Methods We instrumented 757 information workers with fitness trackers for 1 year and conducted EMAs in the first 56 days of study participation as part of an observational study. Their compliance with the EMA and fitness tracker wearing protocols was analyzed. Overall, 31 individual characteristics (eg, demographics and personalities) and behavioral variables (eg, early compliance and study portal use) were considered, and 14 variables were selected to create beta regression models for predicting compliance with EMAs 56 days out and wearable compliance 1 year out. We surveyed study participation and correlated the results with compliance. Results Our modeling indicates that 16% and 25% of the variance in EMA compliance and wearable compliance, respectively, could be explained through a survey of demographics and personality in amore »held-out sample. The likelihood of higher EMA and wearable compliance was associated with being older (EMA: odds ratio [OR] 1.02, 95% CI 1.00-1.03; wearable: OR 1.02, 95% CI 1.01-1.04), speaking English as a first language (EMA: OR 1.38, 95% CI 1.05-1.80; wearable: OR 1.39, 95% CI 1.05-1.85), having had a wearable before joining the study (EMA: OR 1.25, 95% CI 1.04-1.51; wearable: OR 1.50, 95% CI 1.23-1.83), and exhibiting conscientiousness (EMA: OR 1.25, 95% CI 1.04-1.51; wearable: OR 1.34, 95% CI 1.14-1.58). Compliance was negatively associated with exhibiting extraversion (EMA: OR 0.74, 95% CI 0.64-0.85; wearable: OR 0.67, 95% CI 0.57-0.78) and having a supervisory role (EMA: OR 0.65, 95% CI 0.54-0.79; wearable: OR 0.66, 95% CI 0.54-0.81). Furthermore, higher wearable compliance was negatively associated with agreeableness (OR 0.68, 95% CI 0.56-0.83) and neuroticism (OR 0.85, 95% CI 0.73-0.98). Compliance in the second week of the study could help explain more variance; 62% and 66% of the variance in EMA compliance and wearable compliance, respectively, was explained. Finally, compliance correlated with participants’ self-reflection on the ease of participation, usefulness of our compliance portal, timely resolution of issues, and compensation adequacy, suggesting that these are avenues for improving compliance. Conclusions We recommend conducting an initial 2-week pilot to measure trait-like compliance and identify participants at risk of long-term noncompliance, performing oversampling based on participants’ individual characteristics to avoid introducing bias in the sample when excluding data based on noncompliance, using an issue tracking portal, and providing special care in troubleshooting to help participants maintain compliance.« less
  4. Patient-generated health data (PGHD), created and captured from patients via wearable devices and mobile apps, are proliferating outside of clinical settings. Examples include sleep tracking, fitness trackers, continuous glucose monitors, and RFID-enabled implants, with many additional biometric or health surveillance applications in development or envisioned. These data are included in growing stockpiles of personal health data being mined for insight via big data analytics and artificial intelligence/deep learning technologies. Governing these data resources to facilitate patient care and health research while preserving individual privacy and autonomy will be challenging, as PGHD are the least regulated domains of digitalized personal health data (U.S. Department of Health and Human Services, 2018). When patients themselves collect digitalized PGHD using “apps” provided by technology firms, these data fall outside of conventional health data regulation, such as HIPAA. Instead, PGHD are maintained primarily on the information technology infrastructure of vendors, and data are governed under the IT firm’s own privacy policies and within the firm’s intellectual property rights. Dominant narratives position these highly personal data as valuable resources to transform healthcare, stimulate innovation in medical research, and engage individuals in their health and healthcare. However, ensuring privacy, security, and equity of benefits from PGHD willmore »be challenging. PGHD can be aggregated and, despite putative “deidentification,” be linked with other health, economic, and social data for predictive analytics. As large tech companies enter the healthcare sector (e.g., Google Health is partnering with Ascension Health to analyze the PHI of millions of people across 21 U.S. states), the lack of harmonization between regulatory regimes may render existing safeguards to preserve patient privacy and control over their PHI ineffective. While healthcare providers are bound to adhere to health privacy laws, Big Tech comes under more relaxed regulatory regimes that will facilitate monetizing PGHD. We explore three existing data protection regimes relevant to PGHD in the United States that are currently in tension with one another: federal and state health-sector laws, data use and reuse for research and innovation, and industry self-regulation by large tech companies We then identify three types of structures (organizational, regulatory, technological/algorithmic), which synergistically could help enact needed regulatory oversight while limiting the friction and economic costs of regulation. This analysis provides a starting point for further discussions and negotiations among stakeholders and regulators to do so.« less
  5. Patient-generated health data (PGHD), created and captured from patients via wearable devices and mobile apps, are proliferating outside of clinical settings. Examples include sleep tracking, fitness trackers, continuous glucose monitors, and RFID-enabled implants, with many additional biometric or health surveillance applications in development or envisioned. These data are included in growing stockpiles of personal health data being mined for insight via big data analytics and artificial intelligence/deep learning technologies. Governing these data resources to facilitate patient care and health research while preserving individual privacy and autonomy will be challenging, as PGHD are the least regulated domains of digitalized personal health data (U.S. Department of Health and Human Services, 2018). When patients themselves collect digitalized PGHD using “apps” provided by technology firms, these data fall outside of conventional health data regulation, such as HIPAA. Instead, PGHD are maintained primarily on the information technology infrastructure of vendors, and data are governed under the IT firm’s own privacy policies and within the firm’s intellectual property rights. Dominant narratives position these highly personal data as valuable resources to transform healthcare, stimulate innovation in medical research, and engage individuals in their health and healthcare. However, ensuring privacy, security, and equity of benefits from PGHD willmore »be challenging. PGHD can be aggregated and, despite putative “deidentification,” be linked with other health, economic, and social data for predictive analytics. As large tech companies enter the healthcare sector (e.g., Google Health is partnering with Ascension Health to analyze the PHI of millions of people across 21 U.S. states), the lack of harmonization between regulatory regimes may render existing safeguards to preserve patient privacy and control over their PHI ineffective. While healthcare providers are bound to adhere to health privacy laws, Big Tech comes under more relaxed regulatory regimes that will facilitate monetizing PGHD. We explore three existing data protection regimes relevant to PGHD in the United States that are currently in tension with one another: federal and state health-sector laws, data use and reuse for research and innovation, and industry self-regulation by large tech companies We then identify three types of structures (organizational, regulatory, technological/algorithmic), which synergistically could help enact needed regulatory oversight while limiting the friction and economic costs of regulation. This analysis provides a starting point for further discussions and negotiations among stakeholders and regulators to do so.« less