skip to main content

Title: “Geolocation-Centric Information Platform for resilient Spatio-temporal Content Management,
In IoT era, the growth of data variety is driven by crossdomain data fusion. In this paper, we advocate that “local production for local consumption (LPLC) paradigm” can be an innovative approach in cross-domain data fusion, and propose a new framework, geolocationcentric information platform (GCIP) that can produce and deliver diverse spatio-temporal content (STC). In the GCIP, (1) infrastructure-based geographic hierarchy edge network and (2) adhoc-based STC retention system are interplayed to provide both of geolocation-awareness and resiliency. Then, we discussed the concepts and the technical challenges of the GCIP. Finally, we implemented a proof-of-concepts of GCIP and demonstrated its ecacy through practical experiments on campus IPv6 network and simulation experiments.
; ; ; ; ; ;
Award ID(s):
Publication Date:
Journal Name:
IEICE transactions on communications
Sponsoring Org:
National Science Foundation
More Like this
  1. Nowadays erasure coding is one of the most significant techniques in cloud storage systems, which provides both quick parallel I/O processing and high capabilities of fault tolerance on massive data accesses. In these systems, triple disk failure tolerant arrays (3DFTs) is a typical configuration, which is supported by several classic erasure codes like Reed-Solomon (RS) codes, Local Reconstruction Codes (LRC), Minimum Storage Regeneration (MSR) codes, etc. For an online recovery process, the foreground application workloads and the background recovery workloads are handled simultaneously, which requires a comprehensive understanding on both two types of workload characteristics. Although several techniques have beenmore »proposed to accelerate the I/O requests of online recovery processes, they are typically unilateral due to the fact that the above two workloads are not combined together to achieve high cost-effective performance.To address this problem, we propose Erasure Codes Fusion (EC-Fusion), an efficient hybrid erasure coding framework in cloud storage systems. EC-Fusion is a combination of RS and MSR codes, which dynamically selects the appropriate code based on its properties. On one hand, for write-intensive application workloads or low risk on data loss in recovery workloads, EC-Fusion uses RS code to decrease the computational overhead and storage cost concurrently. On the other hand, for read-intensive or frequent reconstruction in workloads, MSR code is a proper choice. Therefore, a better overall application and recovery performance can be achieved in a cost-effective fashion. To demonstrate the effectiveness of EC-Fusion, several experiments are conducted in hadoop systems. The results show that, compared with the traditional hybrid erasure coding techniques, EC-Fusion accelerates the response time for application by up to 1.77×, and reduces the reconstruction time by up to 69.10%.« less
  2. Attributed network embedding aims to learn low dimensional node representations by combining both the network's topological structure and node attributes. Most of the existing methods either propagate the attributes over the network structure or learn the node representations by an encoder-decoder framework. However, propagation based methods tend to prefer network structure to node attributes, whereas encoder-decoder methods tend to ignore the longer connections beyond the immediate neighbors. In order to address these limitations while enjoying the best of the two worlds, we design cross fusion layers for unsupervised attributed network embedding. Specifically, we first construct two separate views to handlemore »network structure and node attributes, and then design cross fusion layers to allow flexible information exchange and integration between the two views. The key design goals of the cross fusion layers are three-fold: 1) allowing critical information to be propagated along the network structure, 2) encoding the heterogeneity in the local neighborhood of each node during propagation, and 3) incorporating an additional node attribute channel so that the attribute information will not be overshadowed by the structure view. Extensive experiments on three datasets and three downstream tasks demonstrate the effectiveness of the proposed method.« less
  3. The conventional machine learning (ML) and deep learning (DL) methods use large amount of data to construct desirable prediction models in a central fusion center for recognizing human activities. However, such model training encounters high communication costs and leads to privacy infringement. To address the issues of high communication overhead and privacy leakage, we employed a widely popular distributed ML technique called Federated Learning (FL) that generates a global model for predicting human activities by combining participated agents’ local knowledge. The state-of-the-art FL model fails to maintain acceptable accuracy when there is a large number of unreliable agents who canmore »infuse false model, or, resource-constrained agents that fails to perform an assigned computational task within a given time window. We developed an FL model for predicting human activities by monitoring agent’s contributions towards model convergence and avoiding the unreliable and resource-constrained agents from training. We assign a score to each client when it joins in a network and the score is updated based on the agent’s activities during training. We consider three mobile robots as FL clients that are heterogeneous in terms of their resources such as processing capability, memory, bandwidth, battery-life and data volume. We consider heterogeneous mobile robots for understanding the effects of real-world FL setting in presence of resource-constrained agents. We consider an agent unreliable if it repeatedly gives slow response or infuses incorrect models during training. By disregarding the unreliable and weak agents, we carry-out the local training of the FL process on selected agents. If somehow, a weak agent is selected and started showing straggler issues, we leverage asynchronous FL mechanism that aggregate the local models whenever it receives a model update from the agents. Asynchronous FL eliminates the issue of waiting for a long time to receive model updates from the weak agents. To the end, we simulate how we can track the behavior of the agents through a reward-punishment scheme and present the influence of unreliable and resource-constrained agents in the FL process. We found that FL performs slightly worse than centralized models, if there is no unreliable and resource-constrained agent. However, as the number of malicious and straggler clients increases, our proposed model performs more effectively by identifying and avoiding those agents while recognizing human activities as compared to the stateof-the-art FL and ML approaches.« less
  4. Autonomous vehicles (AVs) use diverse sensors to understand their surroundings as they continually make safety-critical decisions. However, establishing trust with other AVs is a key prerequisite because safety-critical decisions cannot be made based on data shared from untrusted sources. Existing protocols require an infrastructure network connection and a third-party root of trust to establish a secure channel, which are not always available.In this paper, we propose a sensor-fusion approach for mobile trust establishment, which combines GPS and visual data. The combined data forms evidence that one vehicle is nearby another, which is a strong indication that it is not amore »remote adversary hence trustworthy. Our preliminary experiments show that our sensor-fusion approach achieves above 80% successful pairing of two legitimate vehicles observing the same object with 5 meters of error. Based on these preliminary results, we anticipate that a refined approach can support fuzzy trust establishment, enabling better collaboration between nearby AVs.« less
  5. Legged robots require knowledge of pose and velocity in order to maintain stability and execute walking paths. Current solutions either rely on vision data, which is susceptible to environmental and lighting conditions, or fusion of kinematic and contact data with measurements from an inertial measurement unit (IMU). In this work, we develop a contact-aided invariant extended Kalman filter (InEKF) using the theory of Lie groups and invariant observer design. This filter combines contact-inertial dynamics with forward kinematic corrections to estimate pose and velocity along with all current contact points. We show that the error dynamics follows a log-linear autonomous differentialmore »equation with several important consequences: (a) the observable state variables can be rendered convergent with a domain of attraction that is independent of the system’s trajectory; (b) unlike the standard EKF, neither the linearized error dynamics nor the linearized observation model depend on the current state estimate, which (c) leads to improved convergence properties and (d) a local observability matrix that is consistent with the underlying nonlinear system. Furthermore, we demonstrate how to include IMU biases, add/remove contacts, and formulate both world-centric and robo-centric versions. We compare the convergence of the proposed InEKF with the commonly used quaternion-based extended Kalman filter (EKF) through both simulations and experiments on a Cassie-series bipedal robot. Filter accuracy is analyzed using motion capture, while a LiDAR mapping experiment provides a practical use case. Overall, the developed contact-aided InEKF provides better performance in comparison with the quaternion-based EKF as a result of exploiting symmetries present in system.« less