Abstract Causal effects of biodiversity on ecosystem functions can be estimated using experimental or observational designs — designs that pose a tradeoff between drawing credible causal inferences from correlations and drawing generalizable inferences. Here, we develop a design that reduces this tradeoff and revisits the question of how plant species diversity affects productivity. Our design leverages longitudinal data from 43 grasslands in 11 countries and approaches borrowed from fields outside of ecology to draw causal inferences from observational data. Contrary to many prior studies, we estimate that increases in plot-level species richness caused productivity to decline: a 10% increase in richness decreased productivity by 2.4%, 95% CI [−4.1, −0.74]. This contradiction stems from two sources. First, prior observational studies incompletely control for confounding factors. Second, most experiments plant fewer rare and non-native species than exist in nature. Although increases in native, dominant species increased productivity, increases in rare and non-native species decreased productivity, making the average effect negative in our study. By reducing the tradeoff between experimental and observational designs, our study demonstrates how observational studies can complement prior ecological experiments and inform future ones.
more »
« less
Designing experiments informed by observational studies
Abstract The increasing availability of passively observed data has yielded a growing interest in “data fusion” methods, which involve merging data from observational and experimental sources to draw causal conclusions. Such methods often require a precarious tradeoff between the unknown bias in the observational dataset and the often-large variance in the experimental dataset. We propose an alternative approach, which avoids this tradeoff: rather than using observational data for inference, we use it to design a more efficient experiment. We consider the case of a stratified experiment with a binary outcome and suppose pilot estimates for the stratum potential outcome variances can be obtained from the observational study. We extend existing results to generate confidence sets for these variances, while accounting for the possibility of unmeasured confounding. Then, we pose the experimental design problem as a regret minimization problem subject to the constraints imposed by our confidence sets. We show that this problem can be converted into a concave maximization and solved using conventional methods. Finally, we demonstrate the practical utility of our methods using data from the Women’s Health Initiative.
more »
« less
- Award ID(s):
- 1837931
- PAR ID:
- 10289957
- Date Published:
- Journal Name:
- Journal of Causal Inference
- Volume:
- 9
- Issue:
- 1
- ISSN:
- 2193-3685
- Page Range / eLocation ID:
- 147 to 171
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The spread of infectious disease in a human community or the proliferation of fake news on social media can be modelled as a randomly growing tree-shaped graph. The history of the random growth process is often unobserved but contains important information such as the source of the infection. We consider the problem of statistical inference on aspects of the latent history using only a single snapshot of the final tree. Our approach is to apply random labels to the observed unlabelled tree and analyse the resulting distribution of the growth process, conditional on the final outcome. We show that this conditional distribution is tractable under a shape exchangeability condition, which we introduce here, and that this condition is satisfied for many popular models for randomly growing trees such as uniform attachment, linear preferential attachment and uniform attachment on a D-regular tree. For inference of the root under shape exchangeability, we propose O(n log n) time algorithms for constructing confidence sets with valid frequentist coverage as well as bounds on the expected size of the confidence sets. We also provide efficient sampling algorithms which extend our methods to a wide class of inference problems.more » « less
-
As climate change increasingly affects biodiversity and ecosystem services, a key challenge in ecology is accurate attribution of these impacts. Though experimental studies have greatly advanced our understanding of climate change impacts on ecological systems, experimental results are difficult to generalize to real-world scenarios. To better capture realized impacts, ecologists can use observational data. Disentangling cause and effect using observational data, however, requires careful research design. Here we describe advances in causal inference that can improve climate change attribution in observational settings. Our framework includes five steps: 1) describe the theoretical foundation, 2) choose appropriate observational data sets, 3) design a causal inference analysis, 4) estimate a counterfactual scenario, and 5) evaluate assumptions and results using robustness checks. We then demonstrate this framework using a case study focused on detecting climate change impacts on whitebark pine growth in California’s Sierra Nevada. We conclude with a discussion of challenges and frontiers in ecological climate change attribution. Our aim is to provide an accessible foundation for applying observational causal inference to climate change attribution in ecology.more » « less
-
This work investigates how different forms of input elicitation obtained from crowdsourcing can be utilized to improve the quality of inferred labels for image classification tasks, where an image must be labeled as either positive or negative depending on the presence/absence of a specified object. Five types of input elicitation methods are tested: binary classification (positive or negative); the ( x, y )-coordinate of the position participants believe a target object is located; level of confidence in binary response (on a scale from 0 to 100%); what participants believe the majority of the other participants' binary classification is; and participant's perceived difficulty level of the task (on a discrete scale). We design two crowdsourcing studies to test the performance of a variety of input elicitation methods and utilize data from over 300 participants. Various existing voting and machine learning (ML) methods are applied to make the best use of these inputs. In an effort to assess their performance on classification tasks of varying difficulty, a systematic synthetic image generation process is developed. Each generated image combines items from the MPEG-7 Core Experiment CE-Shape-1 Test Set into a single image using multiple parameters (e.g., density, transparency, etc.) and may or may not contain a target object. The difficulty of these images is validated by the performance of an automated image classification method. Experiment results suggest that more accurate results can be achieved with smaller training datasets when both the crowdsourced binary classification labels and the average of the self-reported confidence values in these labels are used as features for the ML classifiers. Moreover, when a relatively larger properly annotated dataset is available, in some cases augmenting these ML algorithms with the results (i.e., probability of outcome) from an automated classifier can achieve even higher performance than what can be obtained by using any one of the individual classifiers. Lastly, supplementary analysis of the collected data demonstrates that other performance metrics of interest, namely reduced false-negative rates, can be prioritized through special modifications of the proposed aggregation methods.more » « less
-
Observational data is increasingly used as a means for making individual-level causal predictions and intervention recommendations. The foremost challenge of causal inference from observational data is hidden confounding, whose presence cannot be tested in data and can invalidate any causal conclusion. Experimental data does not suffer from confounding but is usually limited in both scope and scale. We introduce a novel method of using limited experimental data to correct the hidden confounding in causal effect models trained on larger observational data, even if the observational data does not fully overlap with the experimental data. Our method makes strictly weaker assumptions than existing approaches, and we prove conditions under which it yields a consistent estimator. We demonstrate our method's efficacy using real-world data from a large educational experiment.more » « less
An official website of the United States government

