skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A Population of Compact Radio Variables and Transients in the Radio-bright Zone at the Galactic Center Observed with the Jansky Very Large Array
Award ID(s):
1909554
PAR ID:
10289983
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
905
Issue:
2
ISSN:
1538-4357
Page Range / eLocation ID:
173
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The first fast radio burst (FRB) to be precisely localized was associated with a luminous persistent radio source (PRS). Recently, a second FRB/PRS association was discovered for another repeating source of FRBs. However, it is not clear what makes FRBs or PRS or how they are related. We compile FRB and PRS properties to consider the population of FRB/PRS sources. We suggest a practical definition for PRS as FRB associations with luminosity greater than 1029erg s−1Hz−1that are not attributed to star formation activity in the host galaxy. We model the probability distribution of the fraction of FRBs with PRS for repeaters and nonrepeaters, showing there is not yet evidence for repeaters to be preferentially associated with PRS. We discuss how FRB/PRS sources may be distinguished by the combination of active repetition and an excess dispersion measure local to the FRB environment. We use CHIME/FRB event statistics to bound the mean per-source repetition rate of FRBs to be between 25 and 440 yr−1. We use this to provide a bound on the density of FRB-emitting sources in the local universe of between 2.2 × 102and 5.2 × 104Gpc−3assuming a pulsar-like beamwidth for FRB emission. This density implies that PRS may comprise as much as 1% of compact, luminous radio sources detected in the local universe. The cosmic density and phenomenology of PRS are similar to that of the newly discovered, off-nuclear “wandering” active galactic nuclei (AGN). We argue that it is likely that some PRS have already been detected and misidentified as AGN. 
    more » « less
  2. null (Ed.)
    ABSTRACT In this paper, we present the identification of five previously unknown giant radio galaxies (GRGs) using Data Release 1 of the Radio Galaxy Zoo citizen science project and a selection method appropriate to the training and validation of deep learning algorithms for new radio surveys. We associate one of these new GRGs with the brightest cluster galaxy (BCG) in the galaxy cluster GMBCG J251.67741+36.45295 and use literature data to identify a further 13 previously known GRGs as BCG candidates, increasing the number of known BCG GRGs by $$\gt 60$$ per cent. By examining local galaxy number densities for the number of all known BCG GRGs, we suggest that the existence of this growing number implies that GRGs are able to reside in the centres of rich (∼1014 M⊙) galaxy clusters and challenges the hypothesis that GRGs grow to such sizes only in locally underdense environments. 
    more » « less
  3. We present Karl G. Jansky Very Large Array S - (2–4 GHz), C - (4–8 GHz), and X -band (8–12 GHz) continuum observations toward seven radio-loud quasars at z  > 5. This sample has previously been found to exhibit spectral peaks at observed-frame frequencies above ∼1 GHz. We also present upgraded Giant Metrewave Radio Telescope (uGMRT) band-2 (200 MHz), band-3 (400 MHz), and band-4 (650 MHz) radio continuum observations toward eight radio-loud quasars at z  > 5, selected from our previous GMRT survey, in order to sample their low-frequency synchrotron emission. Combined with archival radio continuum observations, all ten targets show evidence for spectral turnover. The turnover frequencies are ∼1–50 GHz in the rest frame, making these targets gigahertz-peaked-spectrum or high-frequency-peaker candidates. For the nine well-constrained targets with observations on both sides of the spectral turnover, we fit the entire radio spectrum with absorption models associated with synchrotron self-absorption and free-free absorption (FFA). Our results show that FFA in an external inhomogeneous medium can accurately describe the observed spectra for all nine targets, which may indicate an FFA origin for the radio spectral turnover in our sample. As for the complex spectrum of J114657.79+403708.6 at z  = 5.00 with two spectral peaks, it may be caused by multiple components (i.e., core-jet) and FFA by the high-density medium in the nuclear region. However, we cannot rule out the spectral turnover origin of variability. Based on our radio spectral modeling, we calculate the radio loudness R 2500 Å for our sample, which ranges from 12 −1 +1 to 674 −51 +61 . 
    more » « less