skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The 15 February 2014 Mw 4.1 South Carolina Earthquake Sequence: Aftershock Productivity, Hypocentral Depths, and Stress Drops
Abstract The border between Georgia and South Carolina has a moderate amount of seismicity typical of the Piedmont Province of the eastern United States and greater than most other intraplate regions. Historical records suggest on average a Mw 4.5 earthquake every 50 yr in the region of the J. Strom Thurmond Reservoir, which is located on the border between Georgia and South Carolina. The Mw 4.1 earthquake on 15 February 2014 near Edgefield, South Carolina, was one of the largest events in this region recorded by nearby modern seismometers, providing an opportunity to study its source properties and aftershock productivity. Using the waveforms of the Mw 4.1 mainshock and the only cataloged Mw 3.0 aftershock as templates, we apply a matched‐filter technique to search for additional events between 8 and 22 February 2014. The resulting six new detections are further employed as new templates to scan for more events. Repeating the waveform‐matching method with new templates yields 13 additional events, for a total of 19 previously unidentified events with magnitude 0.06 and larger. The low number of events suggests that this sequence is deficient in aftershock production, as compared with expected aftershock productivities for other mainshocks of similar magnitudes. Hypocentral depths of the Mw 4.1 mainshock and Mw 3.0 aftershock are estimated by examining the differential time between a depth phase called sPL and P‐wave arrivals, as well as by modeling the depth phase of body waves at shorter periods. The best‐fitting depths for both events are around 3–4 km. The obtained stress drops for the Mw 4.1 mainshock and Mw 3.0 aftershock are 3.75 and 4.44 MPa, respectively. The corresponding updated moment magnitude for the aftershock is 2.91.  more » « less
Award ID(s):
1818611
PAR ID:
10290211
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Seismological Research Letters
Volume:
91
Issue:
1
ISSN:
0895-0695
Page Range / eLocation ID:
452 to 464
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. On February 6, 2023, two large earthquakes occurred near the Turkish town of Kahramanmaraş. The moment magnitude (Mw) 7.8 mainshock ruptured a 310 km-long segment of the left-lateral East Anatolian Fault, propagating through multiple releasing step-overs. The Mw 7.6 aftershock involved nearby left-lateral strike-slip faults of the East Anatolian Fault Zone, causing a 150 km-long rupture. We use remote-sensing observations to constrain the spatial distribution of coseismic slip for these two events and the February 20 Mw 6.4 aftershock near Antakya. Pixel tracking of optical and synthetic aperture radar data of the Sentinel-2 and Sentinel-1 satellites, respectively, provide near-field surface displacements. High-rate Global Navigation Satellite System data constrain each event separately. Coseismic slip extends from the surface to about 15 km depth with a shallow slip deficit. Most aftershocks cluster at major fault bends, surround the regions of high coseismic slip, or extend outward of the ruptured faults. For the mainshock, rupture propagation stopped southward at the diffuse termination of the East Anatolian fault and tapered off northward into the Pütürge segment, some 20 km south of the 2020 Mw 6.8 Elaziğ earthquake, highlighting a potential seismic gap. These events underscore the high seismic potential of immature fault systems. 
    more » « less
  2. Abstract On October 28, 2022, a moment magnitude (Mw) 3.8 earthquake occurred in Goesan, South Korea, typically characterized as a stable continental region. Herein, we analyze 42 earthquakes, including the Mw 3.8 earthquake, the largest foreshock (Mw 3.3), which preceded the mainshock by 17 s, and the largest aftershock (Mw 2.9). The primary aim of this study is to identify interactions among the seismic events. To this end, we utilized the permanent seismic networks with the closest station at 8.3 km from the epicenter, and the temporary network deployed eight hours after the mainshock’s occurrence. Relocation results delineate that the mainshock occurred at the southeastern tip of the hypocenter distribution of three foreshocks, trending west-northwest–east-southeast. The aftershocks form an overall spatially diffused seismic pattern that propagates toward both ends of the inferred lineament in the downdip direction. The rupture directivity of the mainshock, along with waveform similarity across the mainshock and foreshocks, confirms the inferred geometry, corresponding well with the focal mechanisms of the mainshock and the largest foreshock. We demonstrate that the change in Coulomb failure stress (ΔCFS) by the largest foreshock was positive where the mainshock occurred and that the mainshock generated ΔCFS capable of triggering the propagation of the aftershocks. 
    more » « less
  3. Abstract Deep‐focus earthquakes provide insight into how subducting slabs deform over a range of spatial and temporal scales as they descend into the mantle. This study uses a 4D source imaging approach to determine centroid locations of the 2015 Mw 7.9 Bonin Islands deep‐focus earthquake and its aftershock sequence. Imaged sources of the mainshock show a complex rupture, but one that is compatible with a sub‐horizontal rupture plane. Previously undetected early aftershocks are imaged down to depths of approximately 750 km and represent the first reported earthquakes that initiate in the lower mantle. These events and a previously reported group of shallower distal aftershocks occur at the lower and upper boundaries of an imaged slab segment that deforms as it penetrates into the lower mantle. We hypothesize that mainshock failure allowed gravitational settling of the slab segment to occur which produced the distal aftershock sequences. 
    more » « less
  4. Koper, Keith (Ed.)
    On 10 February 2021, an MW 7.7 thrust earthquake ruptured the megathrust along the southeast Loyalty Islands within the strong bend in the plate boundary between the Australian plate and the North Fiji Basin. The mainshock involved rupture with ~50 s duration, with pure thrust slip concentrated in an east-west trending slip patch with up to 4.2 m of slip extending from 10 to 25 km depth. Slip at depths <10 km depth is negligible on the curved fault surface, which conforms to the SLAB2 interface model. Static stress drop estimates are ~5.5 MPa, and the radiated energy is 2.38 x 1015 J, with moment-scaled value of 5.7 x 10-6. The relatively shallow rupture from 10-25 km was moderately efficient in generating tsunami, with waves amplitudes up to 20 cm recorded in New Caledonia, New Zealand, Kermadec, and Fiji. Numerous M5+ normal-faulting aftershocks occur south of the trench, indicating effective stress change transfer from the megathrust to the bending flange of Australian plate that is negotiating the bend in the trench. Highly productive sequences involving paired thrust and normal faulting have occurred repeatedly westward along the northwest-trending portion of the Loyalty Islands region, also indicating unusually efficient stress communication. 
    more » « less
  5. null (Ed.)
    ABSTRACT We investigate the deformation processes during the 2019 Ridgecrest earthquake sequence by combining Global Navigation Satellite Systems, strong-motion, and Interferometric Synthetic Aperture Radar datasets in a joint inversion. The spatial complementarity of slip between the Mw 6.4 foreshock, Mw 7.1 mainshock, and afterslip suggests the importance of static stress transfer as a triggering mechanism during the rupture sequence. The coseismic slip of the foreshock concentrates mainly on the east-northeast–west-southwest fault above the hypocenter at depths of 2–8 km. The slip distribution of the mainshock straddles the region above the hypocenter with two isolated patches located to the north-northwest and south-southeast, respectively. The geodetically determined moment magnitudes of the foreshock and mainshock are equivalent to moment magnitudes Mw 6.4 and 7.0, assuming a rigidity of 30 GPa. We find a significant shallow slip deficit (>60%) in the Ridgecrest ruptures, likely resulting from the immature fault system in which the sequence occurred. Rapid afterslip concentrates at depths of 2–6 km, surrounding the rupture areas of the foreshock and mainshock. The ruptures also accelerated viscoelastic flow at lower-crustal depths. The Garlock fault was loaded at several locations, begging the question of possible delayed triggering. 
    more » « less