skip to main content


Title: Evaluating the Effectiveness of Gamification on Students’ Performance in a Cybersecurity Course
The motivation of students to actively engage in course activities has significant impact on the outcome of academic courses. Prior studies have shown that innovative instructional interventions and course delivery methods have a vital role in boosting the motivation of students. Gamification tools aid course delivery by utilizing well established game design principles to enhance skill development, routine practice and self-testing. In this article, we present a study on how the use of a course gamification platform dubbed OneUp impacts the motivation of students in an online cyber security course. The study shows that more than 90% of the respondents agreed that OneUp has improved the effectiveness of the course delivery. In addition, 75% of the respondents want to use OneUp in their future courses. Furthermore, our analysis shows that OneUp has improved the median grade of students from B+ to A- compared to the same course delivered the previous year without using OneUp.  more » « less
Award ID(s):
1821189
NSF-PAR ID:
10290874
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Journal of the Colloquium for Information System Security Education
Volume:
8
Issue:
1
ISSN:
2641-4546
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Although many CS courses require extensive practice, a large number of students show low motivation for engaging in non-graded, self-directed learning activities. To address this problem, we developed OneUp – a highly configurable course gamification platform that enables instructors to tailor the gamification features to fit their preferences. This paper presents a case study of using OneUp to gamify a Data Structures course. The focus is on encouraging students’ self-study and better engagement with out-of-class online practicing. We describe the utilized game elements - badges, leaderboard, virtual currency, and learning dashboards, and provide a descriptive analysis of their use. The results of our evaluation show that this gamification intervention has been well received by the students, resulting in significantly increased student engagement and out-of-class practicing and in a reduced failing rate. 
    more » « less
  2. null (Ed.)
    Effective gamification can only be based on understanding the relationship between learner motivation and the game elements which are used to gamify learning activities. Although frequently mentioned, Virtual Currency (VC) remains underused and scarcely studied in educational gamification. As a motivational affordance, VC can be thought of as supporting different types of motivation, but currently, there is a lack of empirical studies which investigate this. Recognizing this gap, the purpose of our study was to empirically investigate whether and how gamifying learning activities with virtual currency can engender motivation for out-of-class practicing and what type of motivation. In the limited research others have conducted, VC has been studied largely in combination with other game elements, which does not allow reaching reliable conclusions about the impact of the individual elements. For this reason, we studied the effects of VC in a gamified Discrete Math course isolated from other game elements. The study showed that using VC to gamify practicing increased students’ practicing activity, which resulted in improved academic performance. The study also revealed that while gamified practicing did not increase students’ intrinsic motivation, it supported internalization of motivation towards this learning activity. 
    more » « less
  3. Miller, Eva (Ed.)
    The COVID-19 pandemic disrupted global educational systems with institutions transitioning to e-learning. Undergraduate STEM students complained about lowered motivation to learn and complete STEM course requirements. To better prepare for more effective STEM education delivery during high-risk conditions such as pandemics, it is important to understand the learning motivation challenges (LMCs) experienced by students. As part of a larger national research study investigating decision-making in undergraduate STEM students during COVID-19, the purpose of this research is to examine LMCs experienced by undergraduate STEM students. One hundred and ninety students from six U.S. institutions participated in Qualtrics-based surveys. Utilizing a five-point Likert scale, respondents ranked the extent to which they agreed to LMC statements. Using Qualtrics Data Analysis tools and MS Excel, data from 130 useable surveys was analyzed utilizing descriptive and inferential statistics. Results revealed that regardless of classification, GPA, age, or race, STEM students experienced LMCs. The top five LMCs were: (1) Assignment Overloads; (2) Lack of In-Person Peer Interactions; (3) Uncaring Professors; (4) Lack of In-Person Professor Interactions; and (5) Lack of In-Person Laboratory Experiences. Significant relationships existed between three characteristics (GPA, classification, and age) and few LMCs to include assignment overloads. Students tended to attribute lowered motivation to Institutional and Domestic challenges which were typically out of their control, rather than to Personal challenges which were typically within their control. Crosstab analysis suggested that Sophomores, Asians, as well as students with GPAs between 2.00 and 2.49 and aged 41 to 50 years may be the most vulnerable due to higher dependence on traditional in-person STEM educational environments. Early identification of the most vulnerable students should be quickly followed by interventions. Increased attention towards sophomores may reduce exacerbation of potential sophomore slump and middle-child syndrome. All STEM students require critical domestic, institutional, and personal resources. Institutions should strengthen students’ self-regulation skills and provide increased opportunities for remote peer interactions. Training of faculty and administrators is critical to build institutional capacity to motivate and educate STEM students with diverse characteristics in e-learning environments. Pass/fail policies should be carefully designed and implemented to minimize negative impacts on motivation. Employers should expand orientation and mentoring programs for entry-level employees, particularly for laboratory-based tasks. Research is needed to improve the delivery of STEM laboratory e-learning experiences. Findings inform future research, as well as best practices for improved institutional adaptability and resiliency. These will minimize disruptions to student functioning and performance, reduce attrition, and strengthen progression into the STEM workforce during high-risk conditions such as pandemics. With caution, findings may be extended to non-STEM and non-student populations. 
    more » « less
  4. Computers are used in almost all the fields in our daily life –they are used in various occupations and do the tasks with greater precision and as a result, made the life more comfortable. As such, more than 500,000 computing jobs remain unfulfilled in the US (Reported by app association), and many nations need more computer scientist. Therefore, this urge the need for engineering education community and researchers to focus more on underrepresentation of women in CS due to the fact that women currently comprise only 15.7% of computing degrees awarded ; Computer Science has one of the most considerable gender disparities in science, technology, and engineering and the number of female students choosing computer science as their major remains underrepresented regardless of recent improvements; and the reason behind this statistic is the challenges that lessen students’ motivation in CS majors; Programming courses have always had a negative image among students and usually need more practice. In order to increase the number of female students in CS and ensure the health of the community, there is a need to better understand and discover a mechanism that can improve women’s participation in computer science which leads to attracting more female students in computer science. Researchers have explored various engagements strategies in the fields of computer science. One of the strategies that have seen an increase and garnered attention in the last two decades is the use of video game elements or gamification in different fields such as education. Gamification -which usually refers to using video game mechanics in activities not related to video games - aims to increase participants’ engagement and enjoyment. This notion has been increasing popularity over time especially among especially education researchers because game elements -which provide challenges to the players and motivate them to set goals- can be used in learning environments appropriately to enhance the motivation of learners. While there is a strong body of literature around the implications of gamification on student learning, there are inconsistent results in the literature with regards to the interests or attitudes of women. This review aims to provide a critical evaluation of the use of gamification in the application in the existing literature in 1) education 2) computer science and 3) women in computer science to provide a basis for more targeted learning engagement strategies to motivate and retain more women in computing fields and build on the literature on gamification and gender. 
    more » « less
  5. Previous studies have convincingly shown that traditional, content-centered, and didactic teaching methods are not effective for developing a deep understanding and knowledge transfer. Nor does it adequately address the development of critical problem-solving skills. Active and collaborative instruction, coupled with effective means to encourage student engagement, invariably leads to better student learning outcomes irrespective of academic discipline. Despite these findings, the existing construction engineering programs, for the most part, consist of a series of fragmented courses that mainly focus on procedural skills rather than on the fundamental and conceptual knowledge that helps students become innovative problem-solvers. In addition, these courses are heavily dependent on traditional lecture-based teaching methods focused on well-structured and closed-ended problems that prepare students to plug variables into equations to get the answer. Existing programs rarely offer a systematic approach to allow students to develop a deep understanding of the engineering core concepts and discover systematic solutions for fundamental problems. Without properly understanding these core concepts, contextualized in domain-specific settings, students are not able to develop a holistic view that will help them to recognize the big picture and think outside the box to come up with creative solutions for arising problems. The long history of empirical learning in the field of construction engineering shows the significant potential of cognitive development through direct experience and reflection on what works in particular situations. Of course, the complex nature of the construction industry in the twenty-first century cannot afford an education through trial and error in the real environment. However, recent advances in computer science can help educators develop virtual environments and gamification platforms that allow students to explore various scenarios and learn from their experiences. This study aims to address this need by assessing the effectiveness of guided active exploration in a digital game environment on students’ ability to discover systematic solutions for fundamental problems in construction engineering. To address this objective, through a research project funded by the NSF Division of Engineering Education and Centers (EEC), we designed and developed a scenario-based interactive digital game, called Zebel, to guide students solve fundamental problems in construction scheduling. The proposed gamified pedagogical approach was designed based on the Constructivism learning theory and a framework that consists of six essential elements: (1) modeling; (2) reflection; (3) strategy formation; (4) scaffolded exploration; (5) debriefing; and (6) articulation. We also designed a series of pre- and post-assessment instruments for empirical data collection to assess the effectiveness of the proposed approach. The proposed gamified method was implemented in a graduate-level construction planning and scheduling course. The outcomes indicated that students with no prior knowledge of construction scheduling methods were able to discover systematic solutions for fundamental scheduling problems through their experience with the proposed gamified learning method. 
    more » « less