MnO(001) thin films were grown on commercial MgO(001) substrates at 520 °C by reactive molecular beam epitaxy (MBE) using Mn vapor and O2-seeded supersonic molecular beams (SMBs) both with and without radio frequency (RF) plasma excitation. For comparison, MnO(001) films were grown by reactive MBE using O2 from a leak valve. X-ray photoelectron spectroscopy confirmed the Mn2+ oxidation state and 10%–15% excess oxygen near the growth surface. Reflection high-energy electron diffraction and x-ray diffraction evidenced that the films were rock salt cubic MnO with very strong (001) orientation. High-angle annular dark field scanning transmission electron microscopy with energy-dispersive x-ray spectroscopy demonstrated abrupt MnO/MgO interfaces and indicated [(001)MnO||(001)MgO] epitaxial growth. Ex situ atomic force microscopy of films deposited without RF excitation revealed smooth growth surfaces. An SMB-grown MnO(001) film was converted to Mn3O4 with strong (110) orientation by post-growth exposure to an RF-discharge (RFD) SMB source providing O atoms; the surface of the resultant film contained elongated pits aligned with the MgO110 directions. In contrast, using the RFD-SMB source for growth resulted in MnO(001) films with elongated growth pits and square pyramidal hillocks aligned along the MgO110 and 100 directions, respectively.
more »
« less
Quantitative agreement between dynamical rocking curves in ultrafast electron diffraction for x-ray lasers
Electron diffraction through a thin patterned silicon membrane can be used to create complex spatial modulations in electron distributions. By precisely varying parameters such as crystallographic orientation and wafer thickness, the intensity of reflections in the diffraction plane can be controlled and by placing an aperture to block all but one spot, we can form an image with different parts of the patterned membrane, as is done for bright-field imaging in microscopy. The patterned electron beams can then be used to control phase and amplitude of subsequent x-ray emission, enabling novel coherent x-ray methods. The electrons themselves can also be used for femtosecond time resolved diffraction and microscopy. As a first step toward patterned beams, we demonstrate experimentally and through simulation the ability to accurately predict and control diffraction spot intensities. We simulate MeV transmission electron diffraction patterns using the multislice method for various crystallographic orientations of a single crystal Si(001) membrane near beam normal. The resulting intensity maps of the Bragg reflections are compared to experimental results obtained at the Accelerator Structure Test Area Ultrafast Electron Diffraction (ASTA UED) facility at SLAC. Furthermore, the fraction of inelastic and elastic scattering of the initial charge is estimated along with the absorption of the membrane to determine the contrast that would be seen in a patterned version of the Si(001) membrane.
more »
« less
- PAR ID:
- 10290943
- Date Published:
- Journal Name:
- Ultramicroscopy
- Volume:
- 223
- Issue:
- 113211
- ISSN:
- 0304-3991
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Dry oxidation of Si (001) beneath a thin epitaxial SrTiO3 layer has been studied using furnace annealing in flowing oxygen. A 10-nm layer of SrTiO3 is epitaxially grown on Si with no SiO2 interlayer. For such a structure, an annealing temperature of 800 °C was found to be the limiting temperature to prevent silicate formation and disruption of the interface structure. The effect of annealing time on the thickness of the SiO2 layer was investigated. In situ x-ray photoelectron spectroscopy and reflection-high-energy electron diffraction were used to ensure that the quality of SrTiO3 is unchanged after the annealing process. The experimental annealing data are compared with a theoretical oxygen diffusion model based on that of Deal, Grove, and Massoud. The model fits the experimental data well, indicating that oxygen diffusion through the SrTiO3 layer is not the limiting factor. One can therefore readily control the thickness of the SiO2 interlayer by simply controlling the annealing time in flowing oxygen.more » « less
-
Abstract As a promising alternative to the mainstream CoFeB/MgO system with interfacial perpendicular magnetic anisotropy (PMA),L10‐FePd and its synthetic antiferromagnet (SAF) structure with large crystalline PMA can support spintronic devices with sufficient thermal stability at sub‐5 nm sizes. However, the compatibility requirement of preparingL10‐FePd thin films on Si/SiO2wafers is still unmet. In this paper, high‐qualityL10‐FePd and its SAF on Si/SiO2wafers are prepared by coating the amorphous SiO2surface with an MgO(001) seed layer. The preparedL10‐FePd single layer and SAF stack are highly (001)‐textured, showing strong PMA, low damping, and sizeable interlayer exchange coupling, respectively. Systematic characterizations, including advanced X‐ray diffraction measurement and atomic resolution‐scanning transmission electron microscopy, are conducted to explain the outstanding performance ofL10‐FePd layers. A fully‐epitaxial growth that starts from MgO seed layer, induces the (001) texture ofL10‐FePd, and extends through the SAF spacer is observed. This study makes the vision of scalable spintronics more practical.more » « less
-
In this study, we describe reducing the moisture vapor transmission through a commercial polymer bag material using a silicon-incorporated diamond-like carbon (Si-DLC) coating that was deposited using plasma-enhanced chemical vapor deposition. The structure of the Si-DLC coating was analyzed using scanning electron microscopy, Raman spectroscopy, X-ray photoelectron spectroscopy, energy-dispersive X-ray spectroscopy, selective area electron diffraction, and electron energy loss spectroscopy. Moisture vapor transmission rate (MVTR) testing was used to understand the moisture transmission barrier properties of Si-DLC-coated polymer bag material; the MVTR values decreased from 10.10 g/m2 24 h for the as-received polymer bag material to 6.31 g/m2 24 h for the Si-DLC-coated polymer bag material. Water stability tests were conducted to understand the resistance of the Si-DLC coatings toward moisture; the results confirmed the stability of Si-DLC coatings in contact with water up to 100 °C for 4 h. A peel-off adhesion test using scotch tape indicated that the good adhesion of the Si-DLC film to the substrate was preserved in contact with water up to 100 °C for 4 h.more » « less
-
CuTi layers are co-sputter deposited on 20-nm-SiO2/Si(001) wafers at 350 ℃ to quantify their stability in direct contact with a dielectric and to explore the potential of CuTi as barrier- and liner-free interconnect metal. X-ray diffraction pole figures indicate a preferred 001 out-of-plane crystalline orientation and Rutherford backscattering confirms a stoichiometric composition. Vacuum annealing tests at 450 ℃ of CuTi layers indicate considerably higher thermal stability than for pure Cu layers, including negligible dewetting observed by scanning electron microscopy and negligible intermixing with the oxide substrate quantified by photoelectron spectroscopy. Four-point bend tests show a 25% higher interfacial toughness for CuTi/SiO2 than Cu/SiO2 interfaces. CuTi/SiO2 samples also exhibit a 300-times longer failure time than Cu/SiO2 during time-dependent dielectric breakdown tests using an externally applied 3 MV/cm electric field. The higher stability of CuTi in comparison to Cu is attributed to a higher cohesive energy in combination with an atomically thin self-limiting Ti oxide layer at the CuTi/SiO2 interface.more » « less