skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, May 17 until 8:00 AM ET on Saturday, May 18 due to maintenance. We apologize for the inconvenience.


Title: Graph InfoClust: Maximizing Coarse-Grain Mutual Information in Graphs
This work proposes a new unsupervised (or self-supervised) node representation learning method that aims to leverage the coarse-grain information that is available in most graphs. This extends previous attempts that only leverage fine-grain information (similarities within local neighborhoods) or global graph information (similarities across all nodes). Intuitively, the proposed method identifies nodes that belong to the same clusters and maximizes their mutual information. Thus, coarse-grain (cluster-level) similarities that are shared between nodes are preserved in their representations. The core components of the proposed method are (i) a jointly optimized clustering of nodes during learning and (ii) an Infomax objective term that preserves the mutual information among nodes of the same clusters. Our method is able to outperform competing state-of-art methods in various downstream tasks, such as node classification, link prediction, and node clustering. Experiments show that the average gain is between 0.2% and 6.1%, over the best competing approach, over all tasks. Our code is publicly available at: https://github.com/cmavro/Graph-InfoClust-GIC.  more » « less
Award ID(s):
1704074
NSF-PAR ID:
10291005
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Advances in Knowledge Discovery and Data Mining. PAKDD
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Graphs/Networks are common in real-world applications where data have rich content and complex relationships. The increasing popularity also motivates many network learning algorithms, such as community detection, clustering, classification, and embedding learning, etc.. In reality, the large network volumes often hider a direct use of learning algorithms to the graphs. As a result, it is desirable to have the flexibility to condense a network to an arbitrary size, with well-preserved network topology and node content information. In this paper, we propose a graph compression network (GEN) to achieve network compression and embedding at the same time. Our theme is to leverage the network topology to find node mappings, such that densely connected nodes, including their node content, are compressed as a new node, with a latent vector (i.e. embedding) being learned to represent the compressed node. In addition to compression learning, we also develop a novel encoding-decoding framework, using feature diffusion process, to "decompress" the condensed network. Different from traditional graph convolution which uses direct-neighbor message passing, our decompression advocates high-order message passing within compressed nodes to learning feature representation for all nodes in the network. A unique strength of GEN is that it leverages the graph neural network principle to learn mapping automatically, so one can compress a network to an arbitrary size, and also decompress it to the original node space with minimum information loss. Experiments and comparisons confirm that GEN can automatically find clusters and communities, and compress them as new nodes. Results also show that GEN achieves improved performance for numerous tasks, including graph classification and node clustering. 
    more » « less
  2. Graph few-shot learning is of great importance among various graph learning tasks. Under the few-shot scenario, models are often required to conduct classification given limited labeled samples. Existing graph few-shot learning methods typically leverage Graph Neural Networks (GNNs) and perform classification across a series of meta-tasks. Nevertheless, these methods generally rely on the original graph (i.e., the graph that the meta-task is sampled from) to learn node representations. Consequently, the learned representations for the same nodes are identical in all meta-tasks. Since the class sets are different across meta-tasks, node representations should be task-specific to promote classification performance. Therefore, to adaptively learn node representations across meta-tasks, we propose a novel framework that learns a task-specific structure for each meta-task. To handle the variety of nodes across meta-tasks, we extract relevant nodes and learn task-specific structures based on node influence and mutual information. In this way, we can learn node representations with the task-specific structure tailored for each meta-task. We further conduct extensive experiments on five node classification datasets under both single- and multiple-graph settings to validate the superiority of our framework over the state-of-the-art baselines. 
    more » « less
  3. null (Ed.)
    Networks have been widely used to represent the relations between objects such as academic networks and social networks, and learning embedding for networks has thus garnered plenty of research attention. Self-supervised network representation learning aims at extracting node embedding without external supervision. Recently, maximizing the mutual information between the local node embedding and the global summary (e.g. Deep Graph Infomax, or DGI for short) has shown promising results on many downstream tasks such as node classification. However, there are two major limitations of DGI. Firstly, DGI merely considers the extrinsic supervision signal (i.e., the mutual information between node embedding and global summary) while ignores the intrinsic signal (i.e., the mutual dependence between node embedding and node attributes). Secondly, nodes in a real-world network are usually connected by multiple edges with different relations, while DGI does not fully explore the various relations among nodes. To address the above-mentioned problems, we propose a novel framework, called High-order Deep Multiplex Infomax (HDMI), for learning node embedding on multiplex networks in a self-supervised way. To be more specific, we first design a joint supervision signal containing both extrinsic and intrinsic mutual information by high-order mutual information, and we propose a High- order Deep Infomax (HDI) to optimize the proposed supervision signal. Then we propose an attention based fusion module to combine node embedding from different layers of the multiplex network. Finally, we evaluate the proposed HDMI on various downstream tasks such as unsupervised clustering and supervised classification. The experimental results show that HDMI achieves state-of-the-art performance on these tasks. 
    more » « less
  4. null (Ed.)
    Multiplex networks are complex graph structures in which a set of entities are connected to each other via multiple types of relations, each relation representing a distinct layer. Such graphs are used to investigate many complex biological, social, and technological systems. In this work, we present a novel semi-supervised approach for structure-aware representation learning on multiplex networks. Our approach relies on maximizing the mutual information between local node-wise patch representations and label correlated structure-aware global graph representations to model the nodes and cluster structures jointly. Specifically, it leverages a novel cluster-aware, node-contextualized global graph summary generation strategy for effective joint-modeling of node and cluster representations across the layers of a multiplex network. Empirically, we demonstrate that the proposed architecture outperforms state-of-the-art methods in a range of tasks: classification, clustering, visualization, and similarity search on seven real-world multiplex networks for various experiment settings. 
    more » « less
  5. Real-world networked systems often show dynamic properties with continuously evolving network nodes and topology over time. When learning from dynamic networks, it is beneficial to correlate all temporal networks to fully capture the similarity/relevance between nodes. Recent work for dynamic network representation learning typically trains each single network independently and imposes relevance regularization on the network learning at different time steps. Such a snapshot scheme fails to leverage topology similarity between temporal networks for progressive training. In addition to the static node relationships within each network, nodes could show similar variation patterns (e.g., change of local structures) within the temporal network sequence. Both static node structures and temporal variation patterns can be combined to better characterize node affinities for unified embedding learning. In this paper, we propose Graph Attention Evolving Networks (GAEN) for dynamic network embedding with preserved similarities between nodes derived from their temporal variation patterns. Instead of training graph attention weights for each network independently, we allow model weights to share and evolve across all temporal networks based on their respective topology discrepancies. Experiments and validations, on four real-world dynamic graphs, demonstrate that GAEN outperforms the state-of-the-art in both link prediction and node classification tasks.

     
    more » « less