skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Extending RC4 to construct secure random number generators
We consider a general framework for constructing non-linear generators by adding a (32-bit or larger) pseudo-random number generator (PRNG) as a baseline generator to the basic RC4 design, in which an index-selection scheme similar to RC4 is used. We refer to the proposed design as the eRC (enhanced/ extended RC4) design. We discuss several advantages of adding a good baseline generator to the RC4 design, including new updating schemes for the auxiliary table. We consider some popular PRNGs with the nice properties of high-dimensional equi-distribution, efficiency, long period, and portability as the baseline generator. We demonstrate that eRC generators are very efficient via extensive empirical testing on some eRC generators. We also show that eRC is flexible enough to choose minimal design parameters for eRC generators and yet the resulting eRC generators still pass stringent empirical tests, which makes them suitable for both software and hardware implementations.  more » « less
Award ID(s):
1934745
PAR ID:
10291623
Author(s) / Creator(s):
Date Published:
Journal Name:
Proceedings of the 2021 Annual Modeling and Simulation Conference (ANNSIM '21). Society for Computer Simulation International
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We study the problem of learning conditional generators from noisy labeled samples, where the labels are corrupted by random noise. A standard training of conditional GANs will not only produce samples with wrong labels, but also generate poor quality samples. We consider two scenarios, depending on whether the noise model is known or not. When the distribution of the noise is known, we introduce a novel architecture which we call Robust Conditional GAN (RCGAN). The main idea is to corrupt the label of the generated sample before feeding to the adversarial discriminator, forcing the generator to produce samples with clean labels. This approach of passing through a matching noisy channel is justified by accompanying multiplicative approximation bounds between the loss of the RCGAN and the distance between the clean real distribution and the generator distribution. This shows that the proposed approach is robust, when used with a carefully chosen discriminator architecture, known as projection discriminator. When the distribution of the noise is not known, we provide an extension of our architecture, which we call RCGAN-U, that learns the noise model simultaneously while training the generator. We show experimentally on MNIST and CIFAR-10 datasets that both the approaches consistently improve upon baseline approaches, and RCGAN-U closely matches the performance of RCGAN. 
    more » « less
  2. We study the problem of learning conditional generators from noisy labeled samples, where the labels are corrupted by random noise. A standard training of conditional GANs will not only produce samples with wrong labels, but also generate poor quality samples. We consider two scenarios, depending on whether the noise model is known or not. When the distribution of the noise is known, we introduce a novel architecture which we call Robust Conditional GAN (RCGAN). The main idea is to corrupt the label of the generated sample before feeding to the adversarial discriminator, forcing the generator to produce samples with clean labels. This approach of passing through a matching noisy channel is justified by corresponding multiplicative approximation bounds between the loss of the RCGAN and the distance between the clean real distribution and the generator distribution. This shows that the proposed approach is robust, when used with a carefully chosen discriminator architecture, known as projection discriminator. When the distribution of the noise is not known, we provide an extension of our architecture, which we call RCGAN-U, that learns the noise model simultaneously while training the generator. We show experimentally on MNIST and CIFAR-10 datasets that both the approaches consistently improve upon baseline approaches, and RCGAN-U closely matches the performance of RCGAN. 
    more » « less
  3. Electricity markets are cleared by a two-stage, sequential process consisting of a forward (day-ahead) market and a spot (real-time) market. While their design goal is to achieve efficiency, the lack of sufficient competition introduces many opportunities for price manipulation. To discourage this phenomenon, some Independent System Operators (ISOs) mandate generators to submit (approximately) truthful bids in the day-ahead market. However, without fully accounting for all participants' incentives (generators and loads), the application of such a mandate may lead to unintended consequences. In this paper, we model and study the interactions of generators and inelastic loads in a two-stage settlement where generators are required to bid truthfully in the day-ahead market. We show that such mandate, when accounting for generator and load incentives, leads to a {generalized} Stackelberg-Nash game where load decisions (leaders) are performed in day-ahead market and generator decisions (followers) are relegated to the real-time market. Furthermore, the use of conventional supply function bidding for generators in real-time, does not guarantee the existence of a Nash equilibrium. This motivates the use of intercept bidding, as an alternative bidding mechanism for generators in the real-time market. An equilibrium analysis in this setting, leads to a closed-form solution that unveils several insights. Particularly, it shows that, unlike standard two-stage markets, loads are the winners of the competition in the sense that their aggregate payments are less than that of the competitive equilibrium. Moreover, heterogeneity in generators cost has the unintended effect of mitigating loads market power. Numerical studies validate and further illustrate these insights. 
    more » « less
  4. Generators are considered as the core application of electromagnetic machines, which require high-cost rare-earth-based permanent magnets. The development of generators is moving toward high efficiency and increased environmental friendliness. Minimizing the use of rare earth materials such as magnetic materials under the premise of machine performance emerges as a challenging task. Topology optimization has been promisingly applied to many application areas as a powerful generative design tool. It can identify the optimal distribution of magnetic material in the defined design space. This paper employs the level-set-based topology optimization method to design the permanent magnet for generators. The machine under study is a simplified 2D outer rotor direct-drive wind power generator. The dynamic and static models of this generator are studied, and the magnetostatic system is adopted to conduct the topology optimization. The optimization goals in this study mainly focused on two aspects, namely the maximization of the system magnetic energy and the generation of a target magnetic field in the region of the air gap. The continuum shape sensitivity analysis is derived by using the material time derivative, the Lagrange multiplier method, and the adjoint variable method. Two numerical examples are investigated, and the effectiveness of the proposed design framework is validated by comparing the performance of the original design against the optimized design. 
    more » « less
  5. Srinivasan, Srikanth (Ed.)
    {"Abstract":["We obtain new explicit pseudorandom generators for several computational models involving groups. Our main results are as follows: \r\n1) We consider read-once group-products over a finite group G, i.e., tests of the form ∏_{i=1}^n (g_i)^{x_i} where g_i ∈ G, a special case of read-once permutation branching programs. We give generators with optimal seed length c_G log(n/ε) over any p-group. The proof uses the small-bias plus noise paradigm, but derandomizes the noise to avoid the recursion in previous work. Our generator works when the bits are read in any order. Previously for any non-commutative group the best seed length was ≥ log n log(1/ε), even for a fixed order.\r\n2) We give a reduction that "lifts" suitable generators for group products over G to a generator that fools width-w block products, i.e., tests of the form ∏ (g_i)^{f_i} where the f_i are arbitrary functions on disjoint blocks of w bits. Block products generalize several previously studied classes. The reduction applies to groups that are mixing in a representation-theoretic sense that we identify.\r\n3) Combining (2) with (1) and other works we obtain new generators for block products over the quaternions or over any commutative group, with nearly optimal seed length. In particular, we obtain generators for read-once polynomials modulo any fixed m with nearly optimal seed length. Previously this was known only for m = 2.\r\n4) We give a new generator for products over "mixing groups." The construction departs from previous work and uses representation theory. For constant error, we obtain optimal seed length, improving on previous work (which applied to any group). \r\nThis paper identifies a challenge in the area that is reminiscent of a roadblock in circuit complexity - handling composite moduli - and points to several classes of groups to be attacked next."]} 
    more » « less