skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, May 23 until 2:00 AM ET on Friday, May 24 due to maintenance. We apologize for the inconvenience.

Title: Measuring the Perceived Social Intelligence of Robots
Robotic social intelligence is increasingly important. However, measures of human social intelligence omit basic skills, and robot-specific scales do not focus on social intelligence. We combined human robot interaction concepts of beliefs, desires, and intentions with psychology concepts of behaviors, cognitions, and emotions to create 20 Perceived Social Intelligence (PSI) Scales to comprehensively measure perceptions of robots with a wide range of embodiments and behaviors. Participants rated humanoid and non-humanoid robots interacting with people in five videos. Each scale had one factor and high internal consistency, indicating each measures a coherent construct. Scales capturing perceived social information processing skills (appearing to recognize, adapt to, and predict behaviors, cognitions, and emotions) and scales capturing perceived skills for identifying people (appearing to identify humans, individuals, and groups) correlated strongly with social competence and constituted the Mind and Behavior factors. Social presentation scales (appearing friendly, caring, helpful, trustworthy, and not rude, conceited, or hostile) relate more to Social Response to Robots Scales and Godspeed Indices, form a separate factor, and predict positive feelings about robots and wanting social interaction with them. For a comprehensive measure, researchers can use all PSI 20 scales for free. Alternatively, they can select the most relevant scales for their projects.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
ACM Transactions on Human-Robot Interaction
Page Range / eLocation ID:
1 to 29
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    As Human-Robot Interaction becomes more sophisticated, measuring the performance of a social robot is crucial to gauging the effectiveness of its behavior. However, social behavior does not necessarily have strict performance metrics that other autonomous behavior can have. Indeed, when considering robot navigation, a socially-appropriate action may be one that is sub-optimal, resulting in longer paths, longer times to get to a goal. Instead, we can rely on subjective assessments of the robot's social performance by a participant in a robot interaction or by a bystander. In this paper, we use the newly-validated Perceived Social Intelligence (PSI) scale to examine the perception of non-humanoid robots in non-verbal social scenarios. We show that there are significant differences between the perceived social intelligence of robots exhibiting SAN behavior compared to one using a traditional navigation planner in scenarios such as waiting in a queue and group behavior. 
    more » « less
  2. This study evaluated how a robot demonstrating a Theory of Mind (ToM) influenced human perception of social intelligence and animacy in a human-robot interaction. Data was gathered through an online survey where participants watched a video depicting a NAO robot either failing or passing the Sally-Anne false-belief task. Participants (N = 60) were randomly assigned to either the Pass or Fail condition. A Perceived Social Intelligence Survey and the Perceived Intelligence and Animacy subsections of the Godspeed Questionnaire were used as measures. The Godspeed was given before viewing the task to measure participant expectations, and again after to test changes in opinion. Our findings show that robots demonstrating ToM significantly increase perceived social intelligence, while robots demonstrating ToM deficiencies are perceived as less socially intelligent. 
    more » « less
  3. As the influence of social robots in people’s daily lives grows, research on understanding people’s perception of robots including sociability, trust, acceptance, and preference becomes more pervasive. Research has considered visual, vocal, or tactile cues to express robots’ emotions, whereas little research has provided a holistic view in examining the interactions among different factors influencing emotion perception. We investigated multiple facets of user perception on robots during a conversational task by varying the robots’ voice types, appearances, and emotions. In our experiment, 20 participants interacted with two robots having four different voice types. While participants were reading fairy tales to the robot, the robot gave vocal feedback with seven emotions and the participants evaluated the robot’s profiles through post surveys. The results indicate that (1) the accuracy of emotion perception differed depending on presented emotions, (2) a regular human voice showed higher user preferences and naturalness, (3) but a characterized voice was more appropriate for expressing emotions with significantly higher accuracy in emotion perception, and (4) participants showed significantly higher emotion recognition accuracy with the animal robot than the humanoid robot. A follow-up study ([Formula: see text]) with voice-only conditions confirmed that the importance of embodiment. The results from this study could provide the guidelines needed to design social robots that consider emotional aspects in conversations between robots and users. 
    more » « less
  4. Human emotions are expressed through multiple modalities, including verbal and non-verbal information. Moreover, the affective states of human users can be the indicator for the level of engagement and successful interaction, suitable for the robot to use as a rewarding factor to optimize robotic behaviors through interaction. This study demonstrates a multimodal human-robot interaction (HRI) framework with reinforcement learning to enhance the robotic interaction policy and personalize emotional interaction for a human user. The goal is to apply this framework in social scenarios that can let the robots generate a more natural and engaging HRI framework. 
    more » « less
  5. The attribution of human-like characteristics onto humanoid robots has become a common practice in Human-Robot Interaction by designers and users alike. Robot gendering, the attribution of gender onto a robotic platform via voice, name, physique, or other features is a prevalent technique used to increase aspects of user acceptance of robots. One important factor relating to acceptance is user trust. As robots continue to integrate themselves into common societal roles, it will be critical to evaluate user trust in the robot's ability to perform its job. This paper examines the relationship among occupational gender-roles, user trust and gendered design features of humanoid robots. Results from the study indicate that there was no significant difference in the perception of trust in the robot's competency when considering the gender of the robot. This expands the findings found in prior efforts that suggest performance-based factors have larger influences on user trust than the robot's gender characteristics. In fact, our study suggests that perceived occupational competency is a better predictor for human trust than robot gender or participant gender. As such, gendering in robot design should be considered critically in the context of the application by designers. Such precautions would reduce the potential for robotic technologies to perpetuate societal gender stereotypes. 
    more » « less