skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Claim Verification under Positive Unlabeled Learning
We extend evidence-aware claim verification to the context of positive-unlabeled (PU) learning. Existing works assume the truth and the falsity of the claims are known for training and form the task as a supervised learning problem. However, this assumption underestimates the difficulty of collecting false claims; we argue that claim verification is more challenging in the absence of negative labels. We consider a more practical setting, where only a comparatively small number of true claims are labeled and more claims remain unlabeled. Thus, we formulate the claim verification task as a PU learning problem. We decouple learning representation of claim-evidence pair from PU learning and adopt a pre-trained universal language model to encode claim-evidence pairs. We further propose to use the generative adversarial network (GAN) to capture the latent alignment between encoded claim-evidence pair and the truthfulness. We leverage the verification as part of the GAN by extending previous GAN based PU learning. We show that the proposed model achieves the best performance with a small amount of labeled data and is robust to the truthfulness prior estimation. We conduct a thorough analysis of the model selection. The proposed approach performs the best under two practical scenarios: (i) the unlabeled data is more than the labeled data; (ii) and the unlabeled positive data is more than the unlabeled negative data.  more » « less
Award ID(s):
1838145
PAR ID:
10292532
Author(s) / Creator(s):
Date Published:
Journal Name:
Proceedings of the International Conference on Advances in Social Network Analysis and Mining
ISSN:
2473-991X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Peer prediction mechanisms incentivize agents to truthfully report their signals even in the absence of verification by comparing agents’ reports with those of their peers. In the detail-free multi-task setting, agents are asked to respond to multiple independent and identically distributed tasks, and the mechanism does not know the prior distribution of agents’ signals. The goal is to provide an epsilon-strongly truthful mechanism where truth-telling rewards agents “strictly” more than any other strategy profile (with epsilon additive error) even for heterogeneous agents, and to do so while requiring as few tasks as possible. We design a family of mechanisms with a scoring function that maps a pair of reports to a score. The mechanism is strongly truthful if the scoring function is “prior ideal”. Moreover, the mechanism is epsilon-strongly truthful as long as the scoring function used is sufficiently close to the ideal scoring function. This reduces the above mechanism design problem to a learning problem – specifically learning an ideal scoring function. Because learning the prior distribution is sufficient (but not necessary) to learn the scoring function, we can apply standard learning theory techniques that leverage side information about the prior (e.g., that it is close to some parametric model). Furthermore, we derive a variational representation of an ideal scoring function and reduce the learning problem into an empirical risk minimization. We leverage this reduction to obtain very general results for peer prediction in the multi-task setting. Specifically, Sample Complexity. We show how to derive good bounds on the number of tasks required for different types of priors–in some cases exponentially improving previous results. In particular, we can upper bound the required number of tasks for parametric models with bounded learning complexity. Furthermore, our reduction applies to myriad continuous signal space settings. To the best of our knowledge, this is the first peer-prediction mechanism on continuous signals designed for the multi-task setting. Connection to Machine Learning. We show how to turn a soft-predictor of an agent’s signals (given the other agents’ signals) into a mechanism. This allows the practical use of machine learning algorithms that give good results even when many agents provide noisy information. Stronger Properties. In the finite setting, we obtain -strongly truthful mechanisms for any stochastically relevant prior. Prior works either only apply to more restrictive settings, or achieve a weaker notion of truthfulness (informed truthfulness). 
    more » « less
  2. Verifying political claims is a challenging task, as politicians can use various tactics to subtly misrepresent the facts for their agenda. Existing automatic fact-checking systems fall short here, and their predictions like "half-true" are not very useful in isolation, since it is unclear which parts of a claim are true or false. In this work, we focus on decomposing a complex claim into a comprehensive set of yes-no subquestions whose answers influence the veracity of the claim. We present CLAIMDECOMP, a dataset of decompositions for over 1000 claims. Given a claim and its verification paragraph written by fact-checkers, our trained annotators write subquestions covering both explicit propositions of the original claim and its implicit facets, such as additional political context that changes our view of the claim's veracity. We study whether state-of-the-art pre-trained models can learn to generate such subquestions. Our experiments show that these models generate reasonable questions, but predicting implied subquestions based only on the claim (without consulting other evidence) remains challenging. Nevertheless, we show that predicted subquestions can help identify relevant evidence to fact-check the full claim and derive the veracity through their answers, suggesting that claim decomposition can be a useful piece of a fact-checking pipeline. 
    more » « less
  3. We introduce the problem of domain adaptation under Open Set Label Shift (OSLS) where the label distribution can change arbitrarily and a new class may arrive during deployment, but the class-conditional distributions p(x|y) are domain-invariant. OSLS subsumes domain adaptation under label shift and Positive-Unlabeled (PU) learning. The learner's goals here are two-fold: (a) estimate the target label distribution, including the novel class; and (b) learn a target classifier. First, we establish necessary and sufficient conditions for identifying these quantities. Second, motivated by advances in label shift and PU learning, we propose practical methods for both tasks that leverage black-box predictors. Unlike typical Open Set Domain Adaptation (OSDA) problems, which tend to be ill-posed and amenable only to heuristics, OSLS offers a well-posed problem amenable to more principled machinery. Experiments across numerous semi-synthetic benchmarks on vision, language, and medical datasets demonstrate that our methods consistently outperform OSDA baselines, achieving 10--25% improvements in target domain accuracy. Finally, we analyze the proposed methods, establishing finite-sample convergence to the true label marginal and convergence to optimal classifier for linear models in a Gaussian setup. 
    more » « less
  4. The coronavirus pandemic has fostered an explosion of misinformation about the disease, including the risk and effectiveness of vaccination. AI tools for automatic Scientific Claim Verification (SCV) can be crucial to defeat misinformation campaigns spreading through social media channels. However, over the past years, many concerns have been raised about the robustness of AI to adversarial attacks, and the field of automatic scientific claim verification is not exempt. The risk is that such SCV tools may reinforce and legitimize the spread of fake scientific claims rather than refute them. This paper investigates the problem of generating adversarial attacks for SCV tools and shows that it is far more difficult than the generic NLP adversarial attack problem. The current NLP adversarial attack generators, when applied to SCV, often generate modified claims with entirely different meaning from the original. Even when the meaning is preserved, the modification of the generated claim is too simplistic (only a single word is changed), leaving many weaknesses of the SCV tools undiscovered. We propose T5-ParEvo, an iterative evolutionary attack generator, that is able to generate more complex and creative attacks while better preserving the semantics of the original claim. Using detailed quantitative and qualitative analysis, we demonstrate the efficacy of T5-ParEvo in comparison with existing attack generators. 
    more » « less
  5. In this work, we show that for a nontrivial hypothesis class C, we can estimate the distance of a target function f to C (estimate the error rate of the best h∈C) using substantially fewer labeled examples than would be needed to actually {\em learn} a good h∈C. Specifically, we show that for the class C of unions of d intervals on the line, in the active learning setting in which we have access to a pool of unlabeled examples drawn from an arbitrary underlying distribution D, we can estimate the error rate of the best h∈C to an additive error ϵ with a number of label requests that is {\em independent of d} and depends only on ϵ. In particular, we make O((1/ϵ^6)log(1/ϵ)) label queries to an unlabeled pool of size O((d/ϵ^2)log(1/ϵ)). This task of estimating the distance of an unknown f to a given class C is called {\em tolerant testing} or {\em distance estimation} in the testing literature, usually studied in a membership query model and with respect to the uniform distribution. Our work extends that of Balcan et al. (2012) who solved the {\em non}-tolerant testing problem for this class (distinguishing the zero-error case from the case that the best hypothesis in the class has error greater than ϵ). We also consider the related problem of estimating the performance of a given learning algorithm A in this setting. That is, given a large pool of unlabeled examples drawn from distribution D, can we, from only a few label queries, estimate how well A would perform if the entire dataset were labeled and given as training data to A? We focus on k-Nearest Neighbor style algorithms, and also show how our results can be applied to the problem of hyperparameter tuning (selecting the best value of k for the given learning problem). 
    more » « less