Reef-building corals are integral ecosystem engineers of tropical reefs but face threats from climate change. Investigating genetic, epigenetic, and environmental factors influencing their adaptation is critical. Genomic resources are essential for understanding coral biology and guiding conservation efforts. However, genomes of the coral genus Acropora are limited to highly-studied species. Here, we present the assembly and annotation of the genome and DNA methylome of Acropora pulchra from Mo’orea, French Polynesia. Using long-read PacBio HiFi and Illumina RNASeq, we generated the most complete Acropora genome to date (BUSCO completeness of 96.7% metazoan genes). The assembly size is 518 Mbp, with 174 scaffolds, and a scaffold N50 of 17 Mbp. We predicted 40,518 protein-coding genes and 16.74% of the genome in repeats. DNA methylation in the CpG context is 14.6%. This assembly of the A. pulchra genome and DNA methylome will support studies of coastal corals in French Polynesia, aiding conservation and comparative studies of Acropora and cnidarians.
more »
« less
A reference genome for the nectar-robbing Black-throated Flowerpiercer ( Diglossa brunneiventris )
Abstract Black-throated Flowerpiercers (Diglossa brunneiventris) are one species representing a phenotypically specialized group of tanagers (Thraupidae) that have hooked bills which allow them to feed by stealing nectar from the base of flowers. Members of the genus are widely distributed in montane regions from Mexico to northern Argentina, and previous studies of Diglossa have focused on their systematics, phylogenetics, and interesting natural history. Despite numerous studies of species within the genus, no genome assembly exists to represent these nectivorous tanagers. We described the assembly of a genome sequence representing a museum-vouchered, wild, female D. brunneiventris collected in Peru. By combining Pacific Biosciences Sequel long-read technology with 10× linked-read and reference-based scaffolding, we produced a 1.08 Gbp pseudochromosomal assembly including 600 scaffolds with a scaffold N50 of 67.3 Mbp, a scaffold L50 of 6, and a BUSCO completeness score of 95%. This new assembly improves representation of the diverse species that comprise the tanagers, improves on scaffold lengths and contiguity when compared to existing genomic resources for tanagers, and provides another avenue of research into the genetic basis of adaptations common to a nectivorous lifestyle among vertebrates.
more »
« less
- Award ID(s):
- 1655624
- PAR ID:
- 10292547
- Editor(s):
- Sethuraman, A
- Date Published:
- Journal Name:
- G3 Genes|Genomes|Genetics
- ISSN:
- 2160-1836
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The diatom, Cyclotella cryptica, is a well-established model species for physiological studies and biotechnology applications of diatoms. To further facilitate its use as a model diatom, we report an improved reference genome assembly and annotation for C. cryptica strain CCMP332. We used a combination of long- and short-read sequencing to assemble a high-quality and contaminant-free genome. The genome is 171 Mb in size and consists of 662 scaffolds with a scaffold N50 of 494 kb. This represents a 176-fold decrease in scaffold number and 41-fold increase in scaffold N50 compared to the previous assembly. The genome contains 21,250 predicted genes, 75% of which were assigned putative functions. Repetitive DNA comprises 59% of the genome, and an improved classification of repetitive elements indicated that a historically steady accumulation of transposable elements has contributed to the relatively large size of the C. cryptica genome. The high-quality C. cryptica genome will serve as a valuable reference for ecological, genetic, and biotechnology studies of diatoms.more » « less
-
Abstract Reef-building corals are integral ecosystem engineers in tropical coral reefs worldwide but are increasingly threatened by climate change and rising ocean temperatures. Consequently, there is an urgency to identify genetic, epigenetic, and environmental factors, and how they interact, for species acclimatization and adaptation. The availability of genomic resources is essential for understanding the biology of these organisms and informing future research needs for management and and conservation. The highly diverse coral genusAcroporaboasts the largest number of high-quality coral genomes, but these remain limited to a few geographic regions and highly studied species. Here we present the assembly and annotation of the genome and DNA methylome ofAcropora pulchrafrom Mo’orea, French Polynesia. The genome assembly was created from a combination of long-read PacBio HiFi data, from which DNA methylation data were also called and quantified, and additional Illumina RNASeq data forab initiogene predictions. The work presented here resulted in the most completeAcroporagenome to date, with a BUSCO completeness of 96.7% metazoan genes. The assembly size is 518 Mbp, with 174 scaffolds, and a scaffold N50 of 17 Mbp. Structural and functional annotation resulted in the prediction of a total of 40,518 protein-coding genes, and 16.74% of the genome in repeats. DNA methylation in the CpG context was 14.6% and predominantly found in flanking and gene body regions (61.7%). This reference assembly of theA. pulchragenome and DNA methylome will provide the capacity for further mechanistic studies of a common coastal coral in French Polynesia of great relevance for restoration and improve our capacity for comparative genomics inAcroporaand cnidarians more broadly.more » « less
-
Wheat, Christopher (Ed.)Abstract Paper wasps are a model system for the study of social evolution due to a high degree of inter- and intraspecific variation in cooperation, aggression, and visual signals of social status. Increasing the taxonomic coverage of genomic resources for this diverse clade will aid comparative genomic approaches for testing predictions about the molecular basis of social evolution. Here, we provide draft genome assemblies for two well-studied species of paper wasps, Polistes exclamans and Mischocyttarus mexicanus. The P. exclamans genome assembly is 221.5 Mb in length with a scaffold N50 of 4.11 Mb. The M. mexicanus genome assembly is 227 Mb in length with a scaffold N50 of 1.1 Mb. Genomes have low repeat content (9.54–10.75%) and low GC content (32.06–32.4%), typical of other social hymenopteran genomes. The DNA methyltransferase gene, Dnmt3 , was lost early in the evolution of Polistinae. We identified a second independent loss of Dnmt3 within hornets (genus: Vespa).more » « less
-
Abstract BackgroundHigh-quality genomic resources facilitate investigations into behavioral ecology, morphological and physiological adaptations, and the evolution of genomic architecture. Lizards in the genus Sceloporus have a long history as important ecological, evolutionary, and physiological models, making them a valuable target for the development of genomic resources. FindingsWe present a high-quality chromosome-level reference genome assembly, SceUnd1.0 (using 10X Genomics Chromium, HiC, and Pacific Biosciences data), and tissue/developmental stage transcriptomes for the eastern fence lizard, Sceloporus undulatus. We performed synteny analysis with other snake and lizard assemblies to identify broad patterns of chromosome evolution including the fusion of micro- and macrochromosomes. We also used this new assembly to provide improved reference-based genome assemblies for 34 additional Sceloporus species. Finally, we used RNAseq and whole-genome resequencing data to compare 3 assemblies, each representing an increased level of cost and effort: Supernova Assembly with data from 10X Genomics Chromium, HiRise Assembly that added data from HiC, and PBJelly Assembly that added data from Pacific Biosciences sequencing. We found that the Supernova Assembly contained the full genome and was a suitable reference for RNAseq and single-nucleotide polymorphism calling, but the chromosome-level scaffolds provided by the addition of HiC data allowed synteny and whole-genome association mapping analyses. The subsequent addition of PacBio data doubled the contig N50 but provided negligible gains in scaffold length. ConclusionsThese new genomic resources provide valuable tools for advanced molecular analysis of an organism that has become a model in physiology and evolutionary ecology.more » « less
An official website of the United States government

