- Award ID(s):
- 1654374
- NSF-PAR ID:
- 10292690
- Date Published:
- Journal Name:
- Earth Surface Dynamics
- Volume:
- 9
- Issue:
- 3
- ISSN:
- 2196-632X
- Page Range / eLocation ID:
- 413 to 421
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Water-levels and salinity were measured in seven shallow (ca. 2 m deep) wells installed at distances proximal, medial, and distal to the source of tidal flooding between 2017 and 2019 in a warm-season grass meadow adjacent to a salt marsh. Water-table fluctuations greater than 10-cm were associated with seawater, precipitation, or a combination of the two. When the field was flooded by tides (> 0.5 m above predicted), groundwater salinity increased; when the field was flooded by precipitation (> 2.5 cm), the salinity of the groundwater decreased. The increased head gradient that accompanied the rise in the water table appeared to be sufficient to allow the freshwater from precipitation to push the salt water down and towards the marsh creek, resulting in a freshening of the groundwater that persisted until the next saltwater flooding event. Thus, the relative frequency between saltwater flooding, salinization, freshwater flooding, and flushing controlled the groundwater salinity. These findings indicate the importance of high-tide events in the process of salinization of the groundwater and the ameliorating effects of rainfall events whose magnitude is sufficient to increase groundwater elevation at least ten centimeters. Further, they contribute to a growing body of evidence in support of the interaction between fresh- and saltwater flooding events to enhance the salinity of groundwater and drive ecosystem transition from uplands to salt marshes.more » « less
-
Abstract Arid and semiarid ecosystems around the world are often prone to both soil salinization and accelerated soil erosion by wind. Soil salinization, the accumulation of salts in the shallow portions of the soil profile, is known for its ability to decreases soil fertility and inhibit plant growth. However, the effect of salts on soil erodibility by wind and the associated dust emissions in the early stages of soil salinization (low salinity conditions) remains poorly understood. Here we use wind tunnel tests to detect the effects of soil salinity on the threshold velocity for wind erosion and dust production in dry soils with different textures treated with salt‐enriched water at different concentrations. We find that the threshold velocity for wind erosion increases with soil salinity. We explain this finding as the result of salt‐induced (physical) aggregation and soil crust formation, and the increasing strength of surface soil crust with increasing soil salinity, depending on soil texture. Even though saline soils showed resistance to wind erosion in the absence of abraders, the salt crusts were readily ruptured by saltating sand grains resulting in comparable or sometimes even higher particulate matter emissions compared to non‐saline soils. Interestingly, the salinity of the emitted dust is found to be significantly higher (5–10 times more) than that of the parent soil, suggesting that soil salts are preferentially emitted, and airborne dust is enriched of salts.
-
Change in the coastal zone is accelerating with external forcing by sea-level rise, nutrient loading, drought, and over-harvest, leading to significant stress on the foundation plant species of coastal salt marshes. The rapid evolution of marsh state induced by these drivers makes the ability to detect stressors prior to marsh loss important. However, field work in coastal salt marshes can be challenging due to limited access and their fragile nature. Thus, remote sensing approaches hold promise for rapid and accurate determination of marsh state across multiple spatial scales. In this study, we evaluated the use of remote sensing tools to detect three dominant stressors on Spartina alterniflora. We took advantage of a barrier island salt marsh chronosequence in Virginia, USA, where marshes of different ages and level of stressor exist side by side. We collected hyperspectral imagery of plants along with salinity, sediment redox potential, and foliar nitrogen content in the field. We also conducted a greenhouse study where we manipulated environmental conditions. We found that models developed for stressors based on plant spectral response correlated well with salinity and foliar nitrogen within the greenhouse and field data, but were not transferable from lab to field, likely due to the limited range of conditions explored within the greenhouse experiments and the coincidence of multiple stressors in the field. This study is an important step towards the development of a remote sensing tool for tracking of ecosystem development, marsh health, and future ecosystem services.more » « less
-
null (Ed.)Naturally formed forest patches known as tree islands are found within lower-statured wetland matrices throughout the world, where they contrast sharply with the surrounding vegetation. In some coastal wetlands they are embedded in former freshwater marshes that are currently exposed to saltwater intrusion and mangrove encroachment associated with accelerating sea-level rise. In this study we resurveyed tree composition and determined environmental conditions in tree islands of the coastal Florida Everglades that had been examined two decades earlier. We asked whether tree islands in this coastal transition zone were differentiated geomorphologically as well as compositionally, and whether favorable geomorphology enabled coastal forest type(s) to maintain their compositional integrity against rising seas. Patterns of variation in geomorphology and soils among forest types were evident, but were dwarfed by differences between forest and adjacent wetlands. Tree island surfaces were elevated by 12–44 cm, and 210Pb analyses indicated that their current rates of vertical accretion were more rapid than those of surrounding ecosystems. Tree island soils were deeper and more phosphorus-rich than in the adjoining matrix. Salinity decreased interiorward in both tree island and marsh, but porewater was fresher in forest than marsh in Mixed Swamp Forest, midway along the coastal gradient where tropical hardwoods were most abundant. Little decrease in the abundance of tropical hardwood species nor increase in halophytes was observed during the study period. Our data suggest that geomorphological differences between organic tree island and marl marsh, perhaps driven by groundwater upwelling through more transmissive tree island soils, contributed to the forests’ compositional stability, though this stasis may be short-lived despite management efforts.more » « less
-
Abstract Tidal freshwater marshes can protect downstream ecosystems from eutrophication by intercepting excess nutrient loads, but recent studies in salt marshes suggest nutrient loading compromises their structural and functional integrity. Here, we present data on changes in plant biomass, microbial biomass and activity, and soil chemistry from plots in a tidal freshwater marsh on the Altamaha River (GA) fertilized for 10 yr with nitrogen (+N), phosphorus (+P), or nitrogen and phosphorus (+NP). Nitrogen alone doubled aboveground biomass and enhanced microbial activity, specifically rates of potential nitrification, denitrification, and methane production measured in laboratory incubations. Phosphorus alone increased soil P and doubled microbial biomass but did not affect microbial processes. Nitrogen or P alone decreased belowground biomass and soil carbon (C) whereas +NP increased aboveground biomass, microbial biomass and N cycling, and N, P, and C assimilation and burial more than either nutrient alone. Our findings suggest differential nutrient limitation of tidal freshwater macrophytes by N and microbes by P, similar to what has been observed in salt marshes. Macrophytes outcompete microbes for P in response to long‐term N and P additions, leading to increased soil C storage through increased inputs of belowground biomass relative to N and P added singly. The susceptibility of tidal freshwater marshes to long‐term nutrient enrichment and, hence their ability to mitigate eutrophication will depend on the quantity and relative proportion of N vs. P entering estuaries and tidal wetlands.