Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract As global climate change alters the magnitude and rates of environmental stressors, predicting the extent of ecosystem degradation driven by these rapidly changing conditions becomes increasingly urgent. At the landscape scale, disturbances and stressors can increase spatial variability and heterogeneity — indicators that can serve as potential early warnings of declining ecosystem resilience. Increased spatial variability in salt marshes at the landscape scale has been used to quantify the propagation of ponding in salt marsh interiors, but ponding at the landscape scale follows a state change rather than predicts it. Here, we suggest a novel application of commonly collected surface elevation table (SET) data and explore millimeter-scale marsh surface microtopography as a potential early indicator of ecosystem transition. We find an increase in spatial variability using multiple metrics of microtopographic heterogeneity in vulnerable salt marsh communities across the North American Atlantic seaboard. Increasing microtopographic heterogeneity in vulnerable salt marshes mirrored increasing trends in variance when a tipping point is approached in other alternative stable state systems — indicating that early warning signals of marsh drowning and ecosystem transition are observable at small-spatial scales prior to runaway ecosystem degradation. Congruence between traditional and novel metrics of marsh vulnerability suggests that microtopographic metrics can be used to identify hidden vulnerability before widespread marsh degradation. This novel analysis can be easily applied to existing SET records expanding the traditional focus on vertical change to additionally encapsulate lateral processes.more » « less
- 
            Abstract Rising sea levels lead to the migration of salt marshes into coastal forests, thereby shifting both ecosystem composition and function. In this study, we investigate leaf litter decomposition, a critical component of forest carbon cycling, across the marsh-forest boundary with a focus on the potential influence of environmental gradients (i.e., temperature, light, moisture, salinity, and oxygen) on decomposition rates. To examine litter decomposition across these potentially competing co-occurring environmental gradients, we deployed litterbags within distinct forest health communities along the marsh-forest continuum and monitored decomposition rates over 6 months. Our results revealed that while the burial depth of litter enhanced decomposition within any individual forest zone by approximately 60% (decay rate = 0.272 ± 0.029 yr−1(surface), 0.450 ± 0.039 yr−1(buried)), we observed limited changes in decomposition rates across the marsh-forest boundary with only slightly enhanced decomposition in mid-forest soils that are being newly impacted by saltwater intrusion and shrub encroachment. The absence of linear changes in decomposition rates indicates non-linear interactions between the observed environmental gradients that maintain a consistent net rate of decomposition across the marsh-forest boundary. However, despite similar decomposition rates across the boundary, the accumulated soil litter layer disappears because leaf litter influx decreases from the absence of mature trees. Our finding that environmental gradients counteract expected decomposition trends could inform carbon-climate model projections and may be indicative of decomposition dynamics present in other transitioning ecosystem boundaries.more » « less
- 
            Abstract Landward migration of coastal ecosystems in response to sea-level rise is altering coastal carbon dynamics. Although such landscapes rapidly accumulate soil carbon, barrier-island migration jeopardizes long-term storage through burial and exposure of organic-rich backbarrier deposits along the lower beach and shoreface. Here, we quantify the carbon flux associated with the seaside erosion of backbarrier lagoon and peat deposits along the Virginia Atlantic Coast. Barrier transgression leads to the release of approximately 26.1 Gg of organic carbon annually. Recent (1994–2017 C.E.) erosion rates exceed annual soil carbon accumulation rates (1984–2020) in adjacent backbarrier ecosystems by approximately 30%. Additionally, shoreface erosion of thick lagoon sediments accounts for >80% of total carbon losses, despite containing lower carbon densities than overlying salt marsh peat. Together, these results emphasize the impermanence of carbon stored in coastal environments and suggest that existing landscape-scale carbon budgets may overstate the magnitude of the coastal carbon sink.more » « less
- 
            Abstract Sea level rise is leading to the rapid migration of marshes into coastal forests and other terrestrial ecosystems. Although complex biophysical interactions likely govern these ecosystem transitions, projections of sea level driven land conversion commonly rely on a simplified “threshold elevation” that represents the elevation of the marsh‐upland boundary based on tidal datums alone. To determine the influence of biophysical drivers on threshold elevations, and their implication for land conversion, we examined almost 100,000 high‐resolution marsh‐forest boundary elevation points, determined independently from tidal datums, alongside hydrologic, ecologic, and geomorphic data in the Chesapeake Bay, the largest estuary in the U.S. located along the mid‐Atlantic coast. We find five‐fold variations in threshold elevation across the entire estuary, driven not only by tidal range, but also salinity and slope. However, more than half of the variability is unexplained by these variables, which we attribute largely to uncaptured local factors including groundwater discharge, microtopography, and anthropogenic impacts. In the Chesapeake Bay, observed threshold elevations deviate from predicted elevations used to determine sea level driven land conversion by as much as the amount of projected regional sea level rise by 2050. These results suggest that local drivers strongly mediate coastal ecosystem transitions, and that predictions based on elevation and tidal datums alone may misrepresent future land conversion.more » « less
- 
            Abstract The vulnerability of coastal environments to sea-level rise varies spatially, particularly due to local land subsidence. However, high-resolution observations and models of coastal subsidence are scarce, hindering an accurate vulnerability assessment. We use satellite data from 2007 to 2020 to create high-resolution map of subsidence rate at mm-level accuracy for different land covers along the ~3,500 km long US Atlantic coast. Here, we show that subsidence rate exceeding 3 mm per year affects most coastal areas, including wetlands, forests, agricultural areas, and developed regions. Coastal marshes represent the dominant land cover type along the US Atlantic coast and are particularly vulnerable to subsidence. We estimate that 58 to 100% of coastal marshes are losing elevation relative to sea level and show that previous studies substantially underestimate marsh vulnerability by not fully accounting for subsidence.more » « less
- 
            Abstract Ecosystem connectivity tends to increase the resilience and function of ecosystems responding to stressors. Coastal ecosystems sequester disproportionately large amounts of carbon, but rapid exchange of water, nutrients, and sediment makes them vulnerable to sea level rise and coastal erosion. Individual components of the coastal landscape (i.e., marsh, forest, bay) have contrasting responses to sea level rise, making it difficult to forecast the response of the integrated coastal carbon sink. Here we couple a spatially-explicit geomorphic model with a point-based carbon accumulation model, and show that landscape connectivity, in-situ carbon accumulation rates, and the size of the landscape-scale coastal carbon stock all peak at intermediate sea level rise rates despite divergent responses of individual components. Progressive loss of forest biomass under increasing sea level rise leads to a shift from a system dominated by forest biomass carbon towards one dominated by marsh soil carbon that is maintained by substantial recycling of organic carbon between marshes and bays. These results suggest that climate change strengthens connectivity between adjacent coastal ecosystems, but with tradeoffs that include a shift towards more labile carbon, smaller marsh and forest extents, and the accumulation of carbon in portions of the landscape more vulnerable to sea level rise and erosion.more » « less
- 
            Summary Relative sea level rise (SLR) increasingly impacts coastal ecosystems through the formation of ghost forests. To predict the future of coastal ecosystems under SLR and changing climate, it is important to understand the physiological mechanisms underlying coastal tree mortality and to integrate this knowledge into dynamic vegetation models.We incorporate the physiological effect of salinity and hypoxia in a dynamic vegetation model in the Earth system land model, and used the model to investigate the mechanisms of mortality of conifer forests on the west and east coast sites of USA, where trees experience different form of sea water exposure.Simulations suggest similar physiological mechanisms can result in different mortality patterns. At the east coast site that experienced severe increases in seawater exposure, trees loose photosynthetic capacity and roots rapidly, and both storage carbon and hydraulic conductance decrease significantly within a year. Over time, further consumption of storage carbon that leads to carbon starvation dominates mortality. At the west coast site that gradually exposed to seawater through SLR, hydraulic failure dominates mortality because root loss impacts on conductance are greater than the degree of storage carbon depletion.Measurements and modeling focused on understanding the physiological mechanisms of mortality is critical to reducing predictive uncertainty.more » « less
- 
            Abstract Coastal marshes are globally important, carbon dense ecosystems simultaneously maintained and threatened by sea‐level rise. Warming temperatures may increase wetland plant productivity and organic matter accumulation, but temperature‐modulated feedbacks between productivity and decomposition make it difficult to assess how wetlands and their thick, organic‐rich soils will respond to climate warming. Here, we actively increased aboveground plant‐surface and belowground soil temperatures in two marsh plant communities, and found that a moderate amount of warming (1.7°C above ambient temperatures) consistently maximized root growth, marsh elevation gain, and belowground carbon accumulation. Marsh elevation loss observed at higher temperatures was associated with increased carbon mineralization and increased microtopographic heterogeneity, a potential early warning signal of marsh drowning. Maximized elevation and belowground carbon accumulation for moderate warming scenarios uniquely suggest linkages between metabolic theory of individuals and landscape‐scale ecosystem resilience and function, but our work indicates nonpermanent benefits as global temperatures continue to rise.more » « less
- 
            Abstract The impacts of climate change on ecosystems are manifested in how organisms respond to episodic and continuous stressors. The conversion of coastal forests to salt marshes represents a prominent example of ecosystem state change, driven by the continuous stress of sea‐level rise (press), and episodic storms (pulse). Here, we measured the rooting dimension and fall direction of 143 windthrown eastern red cedar (Juniperus virginiana) trees in a rapidly retreating coastal forest in Chesapeake Bay (USA). We found that tree roots were distributed asymmetrically away from the leading edge of soil salinization and towards freshwater sources. The length, number, and circumference of roots were consistently higher in the upslope direction than downslope direction, suggesting an active morphological adaptation to sea‐level rise and salinity stress. Windthrown trees consistently fell in the upslope direction regardless of aspect and prevailing wind direction, suggesting that asymmetric rooting destabilized standing trees, and reduced their ability to withstand high winds. Together, these observations help explain curious observations of coastal forest resilience, and highlight an interesting nonadditive response to climate change, where adaptation to press stressors increases vulnerability to pulse stressors.more » « less
- 
            Abstract Sediment supply is a primary factor in determining marsh response to sea level rise and is typically approximated through high‐resolution measurements of suspended sediment concentrations (SSCs) from adjacent tidal channels. However, understanding sediment transport across the marsh itself remains limited by discontinuous measurements of SSC over individual tidal cycles. Here, we use an array of optical turbidity sensors to build a long‐term, continuous record of SSC across a marsh platform and adjacent tidal channel. We find that channel and marsh concentrations are correlated (i.e., coupled) within tidal cycles but are largely decoupled over longer time scales. We also find that net sediment fluxes decline to near zero within 10 m of the marsh edge. Together, these results suggest that large sections of the marsh platform receive minimal sediment independent of flooding frequency or channel sediment supply. Marsh‐centric, as opposed to channel‐centric, measures of sediment supply may better characterize marsh platform vulnerability.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
