skip to main content


Search for: All records

Award ID contains: 1654374

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The vulnerability of coastal environments to sea-level rise varies spatially, particularly due to local land subsidence. However, high-resolution observations and models of coastal subsidence are scarce, hindering an accurate vulnerability assessment. We use satellite data from 2007 to 2020 to create high-resolution map of subsidence rate at mm-level accuracy for different land covers along the ~3,500 km long US Atlantic coast. Here, we show that subsidence rate exceeding 3 mm per year affects most coastal areas, including wetlands, forests, agricultural areas, and developed regions. Coastal marshes represent the dominant land cover type along the US Atlantic coast and are particularly vulnerable to subsidence. We estimate that 58 to 100% of coastal marshes are losing elevation relative to sea level and show that previous studies substantially underestimate marsh vulnerability by not fully accounting for subsidence.

     
    more » « less
  2. Abstract

    Ecosystem connectivity tends to increase the resilience and function of ecosystems responding to stressors. Coastal ecosystems sequester disproportionately large amounts of carbon, but rapid exchange of water, nutrients, and sediment makes them vulnerable to sea level rise and coastal erosion. Individual components of the coastal landscape (i.e., marsh, forest, bay) have contrasting responses to sea level rise, making it difficult to forecast the response of the integrated coastal carbon sink. Here we couple a spatially-explicit geomorphic model with a point-based carbon accumulation model, and show that landscape connectivity, in-situ carbon accumulation rates, and the size of the landscape-scale coastal carbon stock all peak at intermediate sea level rise rates despite divergent responses of individual components. Progressive loss of forest biomass under increasing sea level rise leads to a shift from a system dominated by forest biomass carbon towards one dominated by marsh soil carbon that is maintained by substantial recycling of organic carbon between marshes and bays. These results suggest that climate change strengthens connectivity between adjacent coastal ecosystems, but with tradeoffs that include a shift towards more labile carbon, smaller marsh and forest extents, and the accumulation of carbon in portions of the landscape more vulnerable to sea level rise and erosion.

     
    more » « less
  3. Summary

    Relative sea level rise (SLR) increasingly impacts coastal ecosystems through the formation of ghost forests. To predict the future of coastal ecosystems under SLR and changing climate, it is important to understand the physiological mechanisms underlying coastal tree mortality and to integrate this knowledge into dynamic vegetation models.

    We incorporate the physiological effect of salinity and hypoxia in a dynamic vegetation model in the Earth system land model, and used the model to investigate the mechanisms of mortality of conifer forests on the west and east coast sites of USA, where trees experience different form of sea water exposure.

    Simulations suggest similar physiological mechanisms can result in different mortality patterns. At the east coast site that experienced severe increases in seawater exposure, trees loose photosynthetic capacity and roots rapidly, and both storage carbon and hydraulic conductance decrease significantly within a year. Over time, further consumption of storage carbon that leads to carbon starvation dominates mortality. At the west coast site that gradually exposed to seawater through SLR, hydraulic failure dominates mortality because root loss impacts on conductance are greater than the degree of storage carbon depletion.

    Measurements and modeling focused on understanding the physiological mechanisms of mortality is critical to reducing predictive uncertainty.

     
    more » « less
  4. Abstract

    Coastal marshes are globally important, carbon dense ecosystems simultaneously maintained and threatened by sea‐level rise. Warming temperatures may increase wetland plant productivity and organic matter accumulation, but temperature‐modulated feedbacks between productivity and decomposition make it difficult to assess how wetlands and their thick, organic‐rich soils will respond to climate warming. Here, we actively increased aboveground plant‐surface and belowground soil temperatures in two marsh plant communities, and found that a moderate amount of warming (1.7°C above ambient temperatures) consistently maximized root growth, marsh elevation gain, and belowground carbon accumulation. Marsh elevation loss observed at higher temperatures was associated with increased carbon mineralization and increased microtopographic heterogeneity, a potential early warning signal of marsh drowning. Maximized elevation and belowground carbon accumulation for moderate warming scenarios uniquely suggest linkages between metabolic theory of individuals and landscape‐scale ecosystem resilience and function, but our work indicates nonpermanent benefits as global temperatures continue to rise.

     
    more » « less
  5. Abstract

    The impacts of climate change on ecosystems are manifested in how organisms respond to episodic and continuous stressors. The conversion of coastal forests to salt marshes represents a prominent example of ecosystem state change, driven by the continuous stress of sea‐level rise (press), and episodic storms (pulse). Here, we measured the rooting dimension and fall direction of 143 windthrown eastern red cedar (Juniperus virginiana) trees in a rapidly retreating coastal forest in Chesapeake Bay (USA). We found that tree roots were distributed asymmetrically away from the leading edge of soil salinization and towards freshwater sources. The length, number, and circumference of roots were consistently higher in the upslope direction than downslope direction, suggesting an active morphological adaptation to sea‐level rise and salinity stress. Windthrown trees consistently fell in the upslope direction regardless of aspect and prevailing wind direction, suggesting that asymmetric rooting destabilized standing trees, and reduced their ability to withstand high winds. Together, these observations help explain curious observations of coastal forest resilience, and highlight an interesting nonadditive response to climate change, where adaptation to press stressors increases vulnerability to pulse stressors.

     
    more » « less
  6. Abstract

    Sediment supply is a primary factor in determining marsh response to sea level rise and is typically approximated through high‐resolution measurements of suspended sediment concentrations (SSCs) from adjacent tidal channels. However, understanding sediment transport across the marsh itself remains limited by discontinuous measurements of SSC over individual tidal cycles. Here, we use an array of optical turbidity sensors to build a long‐term, continuous record of SSC across a marsh platform and adjacent tidal channel. We find that channel and marsh concentrations are correlated (i.e., coupled) within tidal cycles but are largely decoupled over longer time scales. We also find that net sediment fluxes decline to near zero within 10 m of the marsh edge. Together, these results suggest that large sections of the marsh platform receive minimal sediment independent of flooding frequency or channel sediment supply. Marsh‐centric, as opposed to channel‐centric, measures of sediment supply may better characterize marsh platform vulnerability.

     
    more » « less
  7. Abstract

    Sea level rise (SLR) is threatening coastal marshes, leading to large‐scale marsh loss in several micro‐tidal systems. Early recognition of marsh vulnerability to SLR is critical in these systems to aid managers to take appropriate restoration or mitigation measures. However, it is not clear if current marsh vulnerability indicators correctly assess long‐term stability of the marsh system. In this study, two indicators of marsh stress were studied: (i) the skewness of the marsh elevation distribution, and (ii) the abundance of codominant species in mixtures. We combined high‐precision elevation measurements (GPS), LiDAR imagery, vegetation surveys and water level measurements to study these indicators in an organogenic micro‐tidal system (Blackwater River, Maryland, USA), where large‐scale historical conversion from marshes to shallow ponds resulted in a gradient of increasing marsh loss. The two indicators reveal increasingly stressed marshes along the marsh loss gradient, but suggest that the field site with the most marsh loss seems to experience less stress. For the latter site, previous research indicates that wind waves generated on interior marsh ponds contribute to lateral erosion of surrounding marsh edges and hence marsh loss. The eroded marsh sediment might temporarily provide the remaining marshes with the necessary sediment to keep up with relative SLR. However, this is only a short‐term alleviation, as lateral marsh edge erosion and sediment export lead to severe marsh loss in the long term. Our findings indicate that marsh elevation skewness and the abundance of codominant species in mixtures can be used to supplement existing marsh stress indicators, but that additional indices such as fetch length and the sediment budget should be included to account for lateral marsh erosion and sediment export and to correctly assess long‐term stability of micro‐tidal marshes. © 2020 John Wiley & Sons, Ltd.

     
    more » « less
  8. Abstract

    Introduced plants provide a unique opportunity to examine how plants respond through plasticity and adaptation to changing climates. We compared plants ofSpartina alterniflorafrom the native (United States, 27–43°N) and introduced (China, 19–40°N) ranges. In the field and greenhouse, aboveground productivity of Chinese plants was greater than that of North American plants. Aboveground biomass in the field declined with increasing latitude in the native range, a pattern that persisted in the greenhouse, indicating a genetic basis. Aboveground biomass in the field displayed hump‐shaped relationships with latitude in China, but this pattern disappeared in field and greenhouse common gardens, indicating phenotypic plasticity. Relationships in both geographic regions were explained by temperature, which is probably the underlying environmental factor affecting aboveground biomass.S. alterniflorahas evolved greater biomass in China, but in the four decades since it was introduced, it has not yet evolved the genetic cline in biomass seen in its native range. By working at lower latitudes in the introduced range than have been sampled in the native range, we identified an optimum temperature in the introduced range above which aboveground productivity decreases.

     
    more » « less
  9. Marine transgression associated with rising sea levels causes coastal erosion, landscape transitions, and displacement of human populations globally. This process takes two general forms. Along open-ocean coasts, active transgression occurs when sediment-delivery rates are unable to keep pace with accommodation creation, leading to wave-driven erosion and/or landward translation of coastal landforms. It is highly visible, rapid, and limited to narrow portions of the coast. In contrast, passive transgression is subtler and slower, and impacts broader areas. It occurs along low-energy, inland marine margins; follows existing upland contours; and is characterized predominantly by the landward translation of coastal ecosystems. The nature and relative rates of transgression along these competing margins lead to expansion and/or contraction of the coastal zone and—particularly under the influence of anthropogenic interventions—will dictate future coastal-ecosystem response to sea-level rise, as well as attendant, often inequitable, impacts on human populations.

    Expected final online publication date for the Annual Review of Marine Science, Volume 16 is January 2024. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.

     
    more » « less
    Free, publicly-accessible full text available January 3, 2025
  10. Coastal landscapes are naturally shifting mosaics of distinct ecosystems that are rapidly migratingwith sealevel rise. Previous work illustrates that transitions among individual ecosystems have disproportionate impacts on the global carbon cycle, but this cannot address nonlinear interactions between multiple ecosystems that potentially cascade across the coastal landscape. Here, we synthesize carbon stocks, accumulation rates, and regional land cover data over 36 years (1984 and 2020) for a variety of ecosystems across a large portion of the rapidly transgressing mid-Atlantic coast. The coastal landscape of the Virginia Eastern Shore consists of temperate forest, salt marsh, seagrass beds, barrier islands, and coastal lagoons. We found that rapid losses and gains within individual ecosystems largely offset each other, which resulted in relatively stable areas for the different ecosystems, and a 4% (196.9 Gg C) reduction in regional carbon storage. However, new metrics of carbon replacement times indicated that it would take only 7 years of carbon accumulation in surviving ecosystems to compensate this loss. Our findings reveal unique compensatory mechanisms at the scale of entire landscapes that quickly absorb losses and facilitate increased regional carbon storage in the face of historical and contemporary sea-level rise. However, the strength of these compensatory mechanisms may diminish as climate change exacerbates the magnitude of carbon losses. 
    more » « less
    Free, publicly-accessible full text available September 15, 2024