Free fermion vertex superalgebras are discussed from the point of view of Urod vertex algebras [T. Arakawa, T. Creutzig and B. Feigin, Urod algebras and translation of [Formula: see text]-algebras, Forum Mathematics Sigma, Vol. 10 (Cambridge University Press, 2022) and M. Bershtein, B. Feigin and A. Litvinov, Coupling of two conformal field theories and Nakajima–Yoshioka blow-up equations, preprint (2013), arXiv:1310.7281]. We present all finite decompositions of the [Formula: see text]-fermion vertex algebra via Virasoro and [Formula: see text] superconformal vertex algebras. We also present decompositions of higher rank fermion algebras using affine [Formula: see text]-algebras, and a conjecture on the existence of the “square root” of the [Formula: see text] fermion algebra.
more »
« less
Extensions of bundles of C*-algebras
Bundles of C*-algebras can be used to represent limits of physical theories whose algebraic structure depends on the value of a parameter. The primary example is the [Formula: see text] limit of the C*-algebras of physical quantities in quantum theories, represented in the framework of strict deformation quantization. In this paper, we understand such limiting procedures in terms of the extension of a bundle of C*-algebras to some limiting value of a parameter. We prove existence and uniqueness results for such extensions. Moreover, we show that such extensions are functorial for the C*-product, dynamical automorphisms, and the Lie bracket (in the [Formula: see text] case) on the fiber C*-algebras.
more »
« less
- Award ID(s):
- 1846560
- PAR ID:
- 10292771
- Date Published:
- Journal Name:
- Reviews in Mathematical Physics
- Volume:
- online
- Issue:
- online
- ISSN:
- 0129-055X
- Page Range / eLocation ID:
- 2150025
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Starting with a vertex-weighted pointed graph [Formula: see text], we form the free loop algebra [Formula: see text] defined in Hartglass–Penneys’ article on canonical [Formula: see text]-algebras associated to a planar algebra. Under mild conditions, [Formula: see text] is a non-nuclear simple [Formula: see text]-algebra with unique tracial state. There is a canonical polynomial subalgebra [Formula: see text] together with a Dirac number operator [Formula: see text] such that [Formula: see text] is a spectral triple. We prove the Haagerup-type bound of Ozawa–Rieffel to verify [Formula: see text] yields a compact quantum metric space in the sense of Rieffel. We give a weighted analog of Benjamini–Schramm convergence for vertex-weighted pointed graphs. As our [Formula: see text]-algebras are non-nuclear, we adjust the Lip-norm coming from [Formula: see text] to utilize the finite dimensional filtration of [Formula: see text]. We then prove that convergence of vertex-weighted pointed graphs leads to quantum Gromov–Hausdorff convergence of the associated adjusted compact quantum metric spaces. As an application, we apply our construction to the Guionnet–Jones–Shyakhtenko (GJS) [Formula: see text]-algebra associated to a planar algebra. We conclude that the compact quantum metric spaces coming from the GJS [Formula: see text]-algebras of many infinite families of planar algebras converge in quantum Gromov–Hausdorff distance.more » « less
-
We construct asymptotically flat, scalar flat extensions of Bartnik data [Formula: see text], where [Formula: see text] is a metric of positive Gauss curvature on a two-sphere [Formula: see text], and [Formula: see text] is a function that is either positive or identically zero on [Formula: see text], such that the mass of the extension can be made arbitrarily close to the half area radius of [Formula: see text]. In the case of [Formula: see text], the result gives an analog of a theorem of Mantoulidis and Schoen [On the Bartnik mass of apparent horizons, Class. Quantum Grav. 32(20) (2015) 205002, 16 pp.], but with extensions that have vanishing scalar curvature. In the context of initial data sets in general relativity, the result produces asymptotically flat, time-symmetric, vacuum initial data with an apparent horizon [Formula: see text], for any metric [Formula: see text] with positive Gauss curvature, such that the mass of the initial data is arbitrarily close to the optimal value in the Riemannian Penrose inequality. The method we use is the Shi–Tam type metric construction from [Positive mass theorem and the boundary behaviors of compact manifolds with nonnegative scalar curvature, J. Differential Geom. 62(1) (2002) 79–125] and a refined Shi–Tam monotonicity, found by the first named author in [On a localized Riemannian Penrose inequality, Commun. Math. Phys. 292(1) (2009) 271–284].more » « less
-
null (Ed.)Let [Formula: see text] be a group acting properly and by isometries on a metric space [Formula: see text]; it follows that the quotient or orbit space [Formula: see text] is also a metric space. We study the Vietoris–Rips and Čech complexes of [Formula: see text]. Whereas (co)homology theories for metric spaces let the scale parameter of a Vietoris–Rips or Čech complex go to zero, and whereas geometric group theory requires the scale parameter to be sufficiently large, we instead consider intermediate scale parameters (neither tending to zero nor to infinity). As a particular case, we study the Vietoris–Rips and Čech thickenings of projective spaces at the first scale parameter where the homotopy type changes.more » « less
-
Locally trivial bundles of [Formula: see text]-algebras with fiber [Formula: see text] for a strongly self-absorbing [Formula: see text]-algebra [Formula: see text] over a finite CW-complex [Formula: see text] form a group [Formula: see text] that is the first group of a cohomology theory [Formula: see text]. In this paper, we compute these groups by expressing them in terms of ordinary cohomology and connective [Formula: see text]-theory. To compare the [Formula: see text]-algebraic version of [Formula: see text] with its classical counterpart we also develop a uniqueness result for the unit spectrum of complex periodic topological [Formula: see text]-theory.more » « less
An official website of the United States government

