I compare the dark matter content within stellar half-mass radius expected in a $$\Lambda$$CDM-based galaxy formation model with existing observational estimates for the observed dwarf satellites of the Milky Way and ultra-diffuse galaxies (UDGs). The model reproduces the main properties and scaling relations of dwarf galaxies, in particular their stellar mass-size relation. I show that the model also reproduces the relation between the dark matter mass within the half-mass radius, $$M_{\rm dm}( 
                        more » 
                        « less   
                    
                            
                            Accurate mass estimates from the proper motions of dispersion-supported galaxies
                        
                    
    
            ABSTRACT We derive a new mass estimator that relies on internal proper motion measurements of dispersion-supported stellar systems, one that is distinct and complementary to existing estimators for line-of-sight velocities. Starting with the spherical Jeans equation, we show that there exists a radius where the mass enclosed depends only on the projected tangential velocity dispersion, assuming that the anisotropy profile slowly varies. This is well-approximated at the radius where the log-slope of the stellar tracer profile is −2: r−2. The associated mass is $$M(r_{-2}) = 2 G^{-1} \langle \sigma _{\mathcal {T}}^{2}\rangle ^{*} r_{-2}$$ and the circular velocity is $$V^{2}({r_{-2}}) = 2\langle \sigma _{\mathcal {T}}^{2}\rangle ^{*}$$. For a Plummer profile r−2 ≃ 4Re/5. Importantly, r−2 is smaller than the characteristic radius for line-of-sight velocities derived by Wolf et al. Together, the two estimators can constrain the mass profiles of dispersion-supported galaxies. We illustrate its applicability using published proper motion measurements of dwarf galaxies Draco and Sculptor, and find that they are consistent with inhabiting cuspy NFW subhaloes of the kind predicted in CDM but we cannot rule out a core. We test our combined mass estimators against previously published, non-spherical cosmological dwarf galaxy simulations done in both cold dark matter (CDM; naturally cuspy profile) and self-interacting dark matter (SIDM; cored profile). For CDM, the estimates for the dynamic rotation curves are found to be accurate to $$10\rm { per\, cent}$$ while SIDM are accurate to $$15\rm { per\, cent}$$. Unfortunately, this level of accuracy is not good enough to measure slopes at the level required to distinguish between cusps and cores of the type predicted in viable SIDM models without stronger priors. However, we find that this provides good enough accuracy to distinguish between the normalization differences predicted at small radii (r ≃ r−2 < rcore) for interesting SIDM models. As the number of galaxies with internal proper motions increases, mass estimators of this kind will enable valuable constraints on SIDM and CDM models. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1910965
- PAR ID:
- 10292852
- Date Published:
- Journal Name:
- Monthly Notices of the Royal Astronomical Society
- Volume:
- 493
- Issue:
- 4
- ISSN:
- 0035-8711
- Page Range / eLocation ID:
- 5825 to 5837
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            ABSTRACT We perform cosmological zoom-in simulations of 19 relaxed cluster-mass haloes with the inclusion of adiabatic gas in the cold dark matter (CDM) and self-interacting dark matter (SIDM) models. These clusters are selected as dynamically relaxed clusters from a parent simulation with $$M_{\rm 200} \simeq (1\!-\!3)\times 10^{15}{\, \rm M_\odot }$$. Both the dark matter and the intracluster gas distributions in SIDM appear more spherical than their CDM counterparts. Mock X-ray images are generated based on the simulations and are compared to the real X-ray images of 84 relaxed clusters selected from the Chandra and ROSAT archives. We perform ellipse fitting for the isophotes of mock and real X-ray images and obtain the ellipticities at cluster-centric radii of $$r\simeq 0.1\!-\!0.2R_{\rm 200}$$. The X-ray isophotes in SIDM models with increasing cross-sections are rounder than their CDM counterparts, which manifests as a systematic shift in the distribution function of ellipticities. Unexpectedly, the X-ray morphology of the observed non-cool-core clusters agrees better with SIDM models with cross-section $$(\sigma /m)= 0.5\!-\!1\, {\rm cm}^2\, {\rm g}^{-1}$$ than CDM and SIDM with $$(\sigma /m)=0.1\, {\rm cm}^2\, {\rm g}^{-1}$$. Our statistical analysis indicates that the latter two models are disfavoured at the $$68{{\ \rm per\ cent}}$$ confidence level (as conservative estimates). This conclusion is not altered by shifting the radial range of measurements or applying a temperature selection criterion. However, the primary uncertainty originates from the lack of baryonic physics in the adiabatic model, such as cooling, star formation and feedback effects, which still have the potential to reconcile CDM simulations with observations.more » « less
- 
            ABSTRACT Previous studies of fueling black holes in galactic nuclei have argued (on scales $${\sim}0.01{-}1000\,$$pc) accretion is dynamical with inflow rates $$\dot{M}\sim \eta \, M_{\rm gas}/t_{\rm dyn}$$ in terms of gas mass Mgas, dynamical time tdyn, and some η. But these models generally neglected expulsion of gas by stellar feedback, or considered extremely high densities where expulsion is inefficient. Studies of star formation, however, have shown on sub-kpc scales the expulsion efficiency fwind = Mejected/Mtotal scales with the gravitational acceleration as $$(1-f_{\rm wind})/f_{\rm wind}\sim \bar{a}_{\rm grav}/\langle \dot{p}/m_{\ast }\rangle \sim \Sigma _{\rm eff}/\Sigma _{\rm crit}$$ where $$\bar{a}_{\rm grav}\equiv G\, M_{\rm tot}(\lt r)/r^{2}$$ and $$\langle \dot{p}/m_{\ast }\rangle$$ is the momentum injection rate from young stars. Adopting this as the simplest correction for stellar feedback, $$\eta \rightarrow \eta \, (1-f_{\rm wind})$$, we show this provides a more accurate description of simulations with stellar feedback at low densities. This has immediate consequences, predicting the slope and normalization of the MBH − σ and MBH − Mbulge relation, LAGN −SFR relations, and explanations for outliers in compact Es. Most strikingly, because star formation simulations show expulsion is efficient (fwind ∼ 1) below total-mass surface density $$M_{\rm tot}/\pi \, r^{2}\lt \Sigma _{\rm crit}\sim 3\times 10^{9}\, \mathrm{M}_{\odot }\, {\rm kpc^{-2}}$$ (where $$\Sigma _{\rm crit}=\langle \dot{p}/m_{\ast }\rangle /(\pi \, G)$$), BH mass is predicted to specifically trace host galaxy properties above a critical surface brightness Σcrit (B-band $$\mu _{\rm B}^{\rm crit}\sim 19\, {\rm mag\, arcsec^{-2}}$$). This naturally explains why BH masses preferentially reflect bulge properties or central surface densities (e.g. $$\Sigma _{1\, {\rm kpc}}$$), not ‘total’ galaxy properties.more » « less
- 
            ABSTRACT Core formation and runaway core collapse in models with self-interacting dark matter (SIDM) significantly alter the central density profiles of collapsed haloes. Using a forward modelling inference framework with simulated data-sets, we demonstrate that flux ratios in quadruple image strong gravitational lenses can detect the unique structural properties of SIDM haloes, and statistically constrain the amplitude and velocity dependence of the interaction cross-section in haloes with masses between 106 and 1010 M⊙. Measurements on these scales probe self-interactions at velocities below $$30 \ \rm {km} \ \rm {s^{-1}}$$, a relatively unexplored regime of parameter space, complimenting constraints at higher velocities from galaxies and clusters. We cast constraints on the amplitude and velocity dependence of the interaction cross-section in terms of σ20, the cross-section amplitude at $$20 \ \rm {km} \ \rm {s^{-1}}$$. With 50 lenses, a sample size available in the near future, and flux ratios measured from spatially compact mid-IR emission around the background quasar, we forecast $$\sigma _{20} \lt 11\rm {\small {--}}23 \ \rm {cm^2} \rm {g^{-1}}$$ at $$95 {{\ \rm per\ cent}}$$ CI, depending on the amplitude of the subhalo mass function, and assuming cold dark matter (CDM). Alternatively, if $$\sigma _{20} = 19.2 \ \rm {cm^2}\rm {g^{-1}}$$ we can rule out CDM with a likelihood ratio of 20:1, assuming an amplitude of the subhalo mass function that results from doubly efficient tidal disruption in the Milky Way relative to massive elliptical galaxies. These results demonstrate that strong lensing of compact, unresolved sources can constrain SIDM structure on sub-galactic scales across cosmological distances, and the evolution of SIDM density profiles over several Gyr of cosmic time.more » « less
- 
            null (Ed.)ABSTRACT We present the first set of cosmological baryonic zoom-in simulations of galaxies including dissipative self-interacting dark matter (dSIDM). These simulations utilize the Feedback In Realistic Environments galaxy formation physics, but allow the dark matter to have dissipative self-interactions analogous to standard model forces, parametrized by the self-interaction cross-section per unit mass, (σ/m), and the dimensionless degree of dissipation, 0 < fdiss < 1. We survey this parameter space, including constant and velocity-dependent cross-sections, and focus on structural and kinematic properties of dwarf galaxies with $$M_{\rm halo} \sim 10^{10-11}{\, \rm M_\odot }$$ and $$M_{\ast } \sim 10^{5-8}{\, \rm M_\odot }$$. Central density profiles (parametrized as ρ ∝ rα) of simulated dwarfs become cuspy when $$(\sigma /m)_{\rm eff} \gtrsim 0.1\, {\rm cm^{2}\, g^{-1}}$$ (and fdiss = 0.5 as fiducial). The power-law slopes asymptote to α ≈ −1.5 in low-mass dwarfs independent of cross-section, which arises from a dark matter ‘cooling flow’. Through comparisons with dark matter only simulations, we find the profile in this regime is insensitive to the inclusion of baryons. However, when $$(\sigma /m)_{\rm eff} \ll 0.1\, {\rm cm^{2}\, g^{-1}}$$, baryonic effects can produce cored density profiles comparable to non-dissipative cold dark matter (CDM) runs but at smaller radii. Simulated galaxies with $$(\sigma /m) \gtrsim 10\, {\rm cm^{2}\, g^{-1}}$$ and the fiducial fdiss develop significant coherent rotation of dark matter, accompanied by halo deformation, but this is unlike the well-defined thin ‘dark discs’ often attributed to baryon-like dSIDM. The density profiles in this high cross-section model exhibit lower normalizations given the onset of halo deformation. For our surveyed dSIDM parameters, halo masses and galaxy stellar masses do not show appreciable difference from CDM, but dark matter kinematics and halo concentrations/shapes can differ.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    