skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Thirty-seven years of relational Hoare logic: remarks on its principles and history
Relational Hoare logics extend the applicability of modular, deductive verification to encompass important 2-run properties including dependency requirements such as confidentiality and program relations such as equivalence or similarity between program versions. A considerable number of recent works introduce different relational Hoare logics without yet converging on a core set of proof rules. This paper looks backwards to little known early work. This brings to light some principles that clarify and organize the rules as well as suggesting a new rule and a new notion of completeness.  more » « less
Award ID(s):
1718713
PAR ID:
10292863
Author(s) / Creator(s):
Date Published:
Journal Name:
International Symposium on Leveraging Applications of Formal Methods, Verification and Validation
Page Range / eLocation ID:
93-116
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Relational Hoare logics (RHL) provide rules for reasoning about relations between programs. Several RHLs include a rule we call sequential product that infers a relational correctness judgment from judgments of ordinary Hoare logic (HL). Other rules embody sensible patterns of reasoning and have been found useful in practice, but sequential product is relatively complete on its own (with HL). As a more satisfactory way to evaluate RHLs, a notion of alignment completeness is introduced, in terms of the inductive assertion method and product automata. Alignment completeness results are given to account for several different sets of rules. The notion may serve to guide the design of RHLs and relational verifiers for richer programming languages and alignment patterns. 
    more » « less
  2. Relational verification encompasses information flow security, regression verification, translation validation for compilers, and more. Effective alignment of the programs and computations to be related facilitates use of simpler relational invariants and relational procedure specs, which in turn enables automation and modular reasoning. Alignment has been explored in terms of trace pairs, deductive rules of relational Hoare logics (RHL), and several forms of product automata. This article shows how a simple extension of Kleene Algebra with Tests (KAT), called BiKAT, subsumes prior formulations, including alignment witnesses for forall-exists properties, which brings to light new RHL-style rules for such properties. Alignments can be discovered algorithmically or devised manually but, in either case, their adequacy with respect to the original programs must be proved; an explicit algebra enables constructive proof by equational reasoning. Furthermore our approach inherits algorithmic benefits from existing KAT-based techniques and tools, which are applicable to a range of semantic models. 
    more » « less
  3. Properties such as provable security and correctness for randomized programs are naturally expressed relationally as approximate equivalences. As a result, a number of relational program logics have been developed to reason about such approximate equivalences of probabilistic programs. However, existing approximate relational logics are mostly restricted to first-order programs without general state. In this paper we develop Approxis, a higher-order approximate relational separation logic for reasoning about approximate equivalence of programs written in an expressive ML-like language with discrete probabilistic sampling, higher-order functions, and higher-order state. The Approxis logic recasts the concept of error credits in the relational setting to reason about relational approximation, which allows for expressive notions of modularity and composition, a range of new approximate relational rules, and an internalization of a standard limiting argument for showing exact probabilistic equivalences by approximation. We also use Approxis to develop a logical relation model that quantifies over error credits, which can be used to prove exact contextual equivalence. We demonstrate the flexibility of our approach on a range of examples, including the PRP/PRF switching lemma, IND$-CPA security of an encryption scheme, and a collection of rejection samplers. All of the results have been mechanized in the Coq proof assistant and the Iris separation logic framework. 
    more » « less
  4. Adversarial computations are a widely studied class of computations where resource-bounded probabilistic adversaries have access to oracles, i.e., probabilistic procedures with private state. These computations arise routinely in several domains, including security, privacy and machine learning. In this paper, we develop program logics for reasoning about adversarial computations in a higher-order setting. Our logics are built on top of a simply typed λ-calculus extended with a graded monad for probabilities and state. The grading is used to model and restrict the memory footprint and the cost (in terms of oracle calls) of computations. Under this view, an adversary is a higher-order expression that expects as arguments the code of its oracles. We develop unary program logics for reasoning about error probabilities and expected values, and a relational logic for reasoning about coupling-based properties. All logics feature rules for adversarial computations, and yield guarantees that are valid for all adversaries that satisfy a fixed resource policy. We prove the soundness of the logics in the category of quasi-Borel spaces, using a general notion of graded predicate liftings, and we use logical relations over graded predicate liftings to establish the soundness of proof rules for adversaries. We illustrate the working of our logics with simple but illustrative examples. 
    more » « less
  5. Probabilistic couplings are the foundation for many probabilistic relational program logics and arise when relating random sampling statements across two programs. In relational program logics, this manifests as dedicated coupling rules that, e.g., say we may reason as if two sampling statements return the same value. However, this approach fundamentally requires aligning or synchronizing the sampling statements of the two programs which is not always possible. In this paper, we develop Clutch, a higher-order probabilistic relational separation logic that addresses this issue by supporting asynchronous probabilistic couplings. We use Clutch to develop a logical step-indexed logical relation to reason about contextual refinement and equivalence of higher-order programs written in a rich language with a probabilistic choice operator, higher-order local state, and impredicative polymorphism. Finally, we demonstrate our approach on a number of case studies. All the results that appear in the paper have been formalized in the Coq proof assistant using the Coquelicot library and the Iris separation logic framework. 
    more » « less