skip to main content


Title: Transmission Comparison for Cooperative Robotic Applications
The development of powered assistive devices that integrate exoskeletal motors and muscle activation for gait restoration benefits from actuators with low backdrive torque. Such an approach enables motors to assist as needed while maximizing the joint torque muscles, contributing to movement, and facilitating ballistic motions instead of overcoming passive dynamics. Two electromechanical actuators were developed to determine the effect of two candidate transmission implementations for an exoskeletal joint. To differentiate the transmission effects, the devices utilized the same motor and similar gearing. One actuator included a commercially available harmonic drive transmission while the other incorporated a custom designed two-stage planetary transmission. Passive resistance and mechanical efficiency were determined based on isometric torque and passive resistance. The planetary-based actuator outperformed the harmonic-based actuator in all tests and would be more suitable for hybrid exoskeletons.  more » « less
Award ID(s):
1739800
NSF-PAR ID:
10292972
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Actuators
Volume:
10
Issue:
9
ISSN:
2076-0825
Page Range / eLocation ID:
203
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Handheld haptic devices are often limited in rendering capability, as compared to traditional grounded devices. Strenuous design criteria on weight, size, power consumption, and the ungrounded nature of handheld devices, can drive designers to prioritize actuator force or torque production over other components of dynamic range like bandwidth, transparency, and the range of stable impedances. Hybrid actuation, the use of passive and active actuators together, has the potential to increase the dynamic range of handheld haptic devices due to the large passive torque capability, the stabilizing effects of passive actuators, the high bandwidth of conventional DC servomotors, and the synergy between actuators. However, to date the use of hybrid actuation has been limited due to the highly nonlinear torque characteristics of available passive actuators that result in poor rendering accuracy. This paper describes a hybrid actuation approach and novel control topology which aims to solve actuation challenges associated with nonlinear passive actuators in hybrid and handheld haptic devices. The performance of the device is assessed experimentally, and the approach is compared to existing handheld devices. 
    more » « less
  2. Design of rehabilitation and physical assistance robots that work safely and efficiently despite uncertain operational conditions remains an important challenge. Current methods for the design of energy efficient series elastic actuators use an optimization formulation that typically assumes known operational requirements. This approach could lead to actuators that cannot satisfy elongation, speed, or torque requirements when the operation deviates from nominal conditions. Addressing this gap, we propose a convex optimization formulation to design the stiffness of series elastic actuators to minimize energy consumption and satisfy actuator constraints despite uncertainty due to manufacturing of the spring, unmodeled dynamics, efficiency of the transmission, and the kinematics and kinetics of the load. To achieve convexity, we write energy consumption as a scalar convex-quadratic function of compliance. As actuator constraints, we consider peak motor torque, peak motor velocity, limitations due to the speed-torque relationship of DC motors, and peak elongation of the spring. We apply our formulation to the robust design of a series elastic actuator for a powered prosthetic ankle. Our simulation results indicate that a small trade-off between energy efficiency and robustness is justified to design actuators that can operate with uncertainty. 
    more » « less
  3. In this article, we present the design of a powered knee–ankle prosthetic leg, which implements high-torque actuators with low-reduction transmissions. The transmission coupled with a high-torque and low-speed motor creates an actuator with low mechanical impedance and high backdrivability. This style of actuation presents several possible benefits over modern actuation styles in emerging robotic prosthetic legs, which include free-swinging knee motion, compliance with the ground, negligible unmodeled actuator dynamics, less acoustic noise, and power regeneration. Benchtop tests establish that both joints can be backdriven by small torques ( ∼ 1–3 N ⋅ m) and confirm the small reflected inertia. Impedance control tests prove that the intrinsic impedance and unmodeled dynamics of the actuator are sufficiently small to control joint impedance without torque feedback or lengthy tuning trials. Walking experiments validate performance under the designed loading conditions with minimal tuning. Finally, the regenerative abilities, low friction, and small reflected inertia of the presented actuators reduced power consumption and acoustic noise compared to state-of-the-art powered legs. 
    more » « less
  4. null (Ed.)
    This study assessed the metabolic energy consumption of walking with the external components of a “Muscle-First” Motor Assisted Hybrid Neuroprosthesis (MAHNP), which combines implanted neuromuscular stimulation with a motorized exoskeleton. The “Muscle-First” approach prioritizes generating motion with the wearer's own muscles via electrical stimulation with the actuators assisting on an as-needed basis. The motorized exoskeleton contributes passive resistance torques at both the hip and knee joints of 6Nm and constrains motions to the sagittal plane. For the muscle contractions elicited by neural stimulation to be most effective, the motorized joints need to move freely when not actively assisting the desired motion. This study isolated the effect of the passive resistance or “friction” added at the joints by the assistive motors and transmissions on the metabolic energy consumption of walking in the device. Oxygen consumption was measured on six able-bodied subjects performing 6 min walk tests at three different speeds (0.4, 0.8, and 1.2 m/s) under two different conditions: one with the motors producing no torque to compensate for friction, and the other having the motors injecting power to overcome passive friction based on a feedforward friction model. Average oxygen consumption in the uncompensated condition across all speeds, measured in Metabolic Equivalent of Task (METs), was statistically different than the friction compensated condition. There was an average decrease of 8.8% for METs and 1.9% for heart rate across all speeds. While oxygen consumption was reduced when the brace performed friction compensation, other factors may have a greater contribution to the metabolic energy consumption when using the device. Future studies will assess the effects of gravity compensation on the muscular effort required to lift the weight of the distal segments of the exoskeleton as well as the sagittal plane constraint on walking motions in individuals with spinal cord injuries (SCI). 
    more » « less
  5. Impedance based kinesthetic haptic devices have been a focus of study for many years. Factors such as delay and the dynamics of the device itself affect the stable rendering range of traditional active kinesthetic devices. A parallel hybrid actuation approach, which combines active energy supplying actuators and passive energy absorbing actuators into a single actuator, has recently been experimentally shown to increase the range of stable virtual stiffness a haptic device can achieve when compared to the active component of the actuator alone. This work presents both a stability and rendering range analysis that aims to identify the mechanisms and limitations by which parallel hybrid actuation increases the stable rendering range of virtual stiffness. Increases in actuator stability are analytically and experimentally shown to be linked to the stiffness of the passive actuator. 
    more » « less