How to cluster event sequences generated via different point processes is an interesting and important problem in statistical machine learning. To solve this problem, we propose and discuss an effective model-based clustering method based on a novel Dirichlet mixture model of a special but significant type of point processes — Hawkes process. The proposed model generates the event sequences with different clusters from the Hawkes processes with different parameters, and uses a Dirichlet distribution as the prior distribution of the clusters. We prove the identifiability of our mixture model and propose an effective variational Bayesian inference algorithm to learn our model. An adaptive inner iteration allocation strategy is designed to accelerate the convergence of our algorithm. Moreover, we investigate the sample complexity and the computational complexity of our learning algorithm in depth. Experiments on both synthetic and real-world data show that the clustering method based on our model can learn structural triggering patterns hidden in asynchronous event sequences robustly and achieve superior performance on clustering purity and consistency compared to existing methods.
more »
« less
Crowdsourcing via Annotator Co-occurrence Imputation and Provable Symmetric Nonnegative Matrix Factorization
Unsupervised learning of the Dawid-Skene (D&S) model from noisy, incomplete and crowdsourced annotations has been a long-standing challenge, and is a critical step towards reliably labeling massive data. A recent work takes a coupled nonnegative matrix factorization (CNMF) perspective, and shows appealing features: It ensures the identifiability of the D&S model and enjoys low sample complexity, as only the estimates of the co-occurrences of annotator labels are involved. However, the identifiability holds only when certain somewhat restrictive conditions are met in the context of crowdsourcing. Optimizing the CNMF criterion is also costly—and convergence assurances are elusive. This work recasts the pairwise co-occurrence based D&S model learning problem as a symmetric NMF (SymNMF) problem—which offers enhanced identifiability relative to CNMF. In practice, the SymNMF model is often (largely) incomplete, due to the lack of co-labeled items by some annotators. Two lightweight algorithms are proposed for co-occurrence imputation. Then, a low-complexity shifted rectified linear unit (ReLU)-empowered SymNMF algorithm is proposed to identify the D&S model. Various performance characterizations (e.g., missing co-occurrence recoverability, stability, and convergence) and evaluations are also presented.
more »
« less
- Award ID(s):
- 2007836
- PAR ID:
- 10292988
- Editor(s):
- Meila, Marina; Zhang, Tong
- Date Published:
- Journal Name:
- Proceedings of the 38th International Conference on Machine Learning
- Volume:
- 139
- Page Range / eLocation ID:
- 4544-4554
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The practicality of reinforcement learning algorithms has been limited due to poor scaling with respect to the problem size, as the sample complexity of learning an ε-optimal policy is Ω(|S||A|H/ ε2) over worst case instances of an MDP with state space S, action space A, and horizon H. We consider a class of MDPs for which the associated optimal Q* function is low rank, where the latent features are unknown. While one would hope to achieve linear sample complexity in |S| and |A| due to the low rank structure, we show that without imposing further assumptions beyond low rank of Q*, if one is constrained to estimate the Q function using only observations from a subset of entries, there is a worst case instance in which one must incur a sample complexity exponential in the horizon H to learn a near optimal policy. We subsequently show that under stronger low rank structural assumptions, given access to a generative model, Low Rank Monte Carlo Policy Iteration (LR-MCPI) and Low Rank Empirical Value Iteration (LR-EVI) achieve the desired sample complexity of Õ((|S|+|A|)poly (d,H)/ε2) for a rank d setting, which is minimax optimal with respect to the scaling of |S|, |A|, and ε. In contrast to literature on linear and low-rank MDPs, we do not require a known feature mapping, our algorithm is computationally simple, and our results hold for long time horizons. Our results provide insights on the minimal low-rank structural assumptions required on the MDP with respect to the transition kernel versus the optimal action-value function.more » « less
-
The data deluge comes with high demands for data labeling. Crowdsourcing (or, more generally, ensemble learning) techniques aim to produce accurate labels via integrating noisy, non-expert labeling from annotators. The classic Dawid-Skene estimator and its accompanying expectation maximization (EM) algorithm have been widely used, but the theoretical properties are not fully understood. Tensor methods were proposed to guarantee identification of the Dawid-Skene model, but the sample complexity is a hurdle for applying such approaches---since the tensor methods hinge on the availability of third-order statistics that are hard to reliably estimate given limited data. In this paper, we propose a framework using pairwise co-occurrences of the annotator responses, which naturally admits lower sample complexity. We show that the approach can identify the Dawid-Skene model under realistic conditions. We propose an algebraic algorithm reminiscent of convex geometry-based structured matrix factorization to solve the model identification problem efficiently, and an identifiability-enhanced algorithm for handling more challenging and critical scenarios. Experiments show that the proposed algorithms outperform the state-of-art algorithms under a variety of scenarios.more » « less
-
Using noisy crowdsourced labels from multiple annotators, a deep learning-based end-to-end (E2E) system aims to learn the label correction mechanism and the neural classifier simultaneously. To this end, many E2E systems concatenate the neural classifier with multiple annotator-specific label confusion layers and co-train the two parts in a parameter-coupled manner. The formulated coupled cross-entropy minimization (CCEM)-type criteria are intuitive and work well in practice. Nonetheless, theoretical understanding of the CCEM criterion has been limited. The contribution of this work is twofold: First, performance guarantees of the CCEM criterion are presented. Our analysis reveals for the first time that the CCEM can indeed correctly identify the annotators' confusion characteristics and the desired ``ground-truth'' neural classifier under realistic conditions, e.g., when only incomplete annotator labeling and finite samples are available. Second, based on the insights learned from our analysis, two regularized variants of the CCEM are proposed. The regularization terms provably enhance the identifiability of the target model parameters in various more challenging cases. A series of synthetic and real data experiments are presented to showcase the effectiveness of our approach.more » « less
-
An important problem across multiple disciplines is to infer and understand meaningful latent variables. One strategy commonly used is to model the measured variables in terms of the latent variables under suitable assumptions on the connectivity from the latents to the measured (known as measurement model). Furthermore, it might be even more interesting to discover the causal relations among the latent variables (known as structural model). Recently, some methods have been proposed to estimate the structural model by assuming that the noise terms in the measured and latent variables are non-Gaussian. However, they are not suitable when some of the noise terms become Gaussian. To bridge this gap, we investigate the problem of identification of the structural model with arbitrary noise distributions. We provide necessary and sufficient condition under which the structural model is identifiable: it is identifiable iff for each pair of adjacent latent variables Lx, Ly, (1) at least one of Lx and Ly has non-Gaussian noise, or (2) at least one of them has a non-Gaussian ancestor and is not d-separated from the non-Gaussian component of this ancestor by the common causes of Lx and Ly. This identifiability result relaxes the non-Gaussianity requirements to only a (hopefully small) subset of variables, and accordingly elegantly extends the application scope of the structural model. Based on the above identifiability result, we further propose a practical algorithm to learn the structural model. We verify the correctness of the identifiability result and the effectiveness of the proposed method through empirical studies.more » « less