skip to main content


Title: Draco: Architectural and Operating System Support for System Call Security
Abstract—System call checking is extensively used to protect the operating system kernel from user attacks. However, existing solutions such as Seccomp execute lengthy rule-based checking programs against system calls and their arguments, leading to substantial execution overhead. To minimize checking overhead, this paper proposes Draco, a new architecture that caches system call IDs and argument values after they have been checked and validated. System calls are first looked-up in a special cache and, on a hit, skip all checks. We present both a software and a hardware implementation of Draco. The latter introduces a System Call Lookaside Buffer (SLB) to keep recently-validated system calls, and a System Call Target Buffer to preload the SLB in advance. In our evaluation, we find that the average execution time of macro and micro benchmarks with conventional Seccomp checking is 1.14_ and 1.25_ higher, respectively, than on an insecure baseline that performs no security checks. With our software Draco, the average execution time reduces to 1.10_ and 1.18_ higher, respectively, than on the insecure baseline. With our hardware Draco, the execution time is within 1% of the insecure baseline.  more » « less
Award ID(s):
2029049
NSF-PAR ID:
10293060
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
In Proceedings of the 53rd IEEE/ACM International Symposium on Microarchitecture (MICRO-53)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Memory safety invariants extracted from a program can help defend and detect against both software and hardware memory violations. For instance, by allowing only specific instructions to access certain memory locations, system can detect out-of-bound or illegal pointer dereferences that lead to correctness and security issues. In this paper, we propose CPU abstractions, called, to specify and check program invariants to provide defense mechanism against both software and hardware memory violations at runtime. ensures that the invariants must be satisfied at every memory accesses. We present a fast invariant address translation and retrieval scheme using a specialized cache. It stores and checks invariants related to global, stack and heap objects. The invariant checks can be performed synchronously or asynchronously. uses synchronous checking for high security-critical programs, while others are protected by asynchronous checking. A fast exception is proposed to alert any violations as soon as possible in order to close the gap for transient attacks. Our evaluation shows that can detect both software and hardware, spatial and temporal memory violations. incurs 53% overhead when checking synchronously, or 15% overhead when checking asynchronously. 
    more » « less
  2. RISC-V is a promising open source architecture that targets low-power embedded devices and SoCs. However, there is a dearth of practical and low-overhead security solutions in the RISC-V architecture. Programs compiled using RISC-V toolchains are still vulnerable to code injection and code reuse attacks such as buffer overflow and return-oriented programming (ROP). In this paper, we propose two hardware implemented security extensions to RISC-V that provides a defense mechanism against such attacks. We first employ a Physically Unclonable Function (PUF)-based randomized canary generation technique that removes the need to store the sensitive canary words in memory or CPU registers, thereby being more secure, while incurring low overheads. We implement the proposed Canary Engine in RISC-V RocketChip with Rocket Custom Coprocessor (RoCC). Simulation results show 2.2% average execution overhead with a single buffer protection, while a 10X increase in buffer count only increases the overhead by 1.5X when protection is extended to all buffers. We further improve upon this with a dedicated security coprocessor FIXER, implemented on the RoCC. FIXER enforces fine-grained control-flow integrity (CFI) of running programs on backward edges (returns) and forward edges (calls) without requiring any architectural modifications to the processor core. Compared to software-based solutions, FIXER reduces energy overhead by 60% at minimal execution time (1.5%) and area (2.9%) overheads. 
    more » « less
  3. With the proliferation of safety-critical real-time systems in our daily life, it is imperative that their security is protected to guarantee their functionalities. To this end, one of the most powerful modern security primitives is the enforcement of data flow integrity. However, the run-time overhead can be prohibitive for real-time cyber-physical systems. On the other hand, due to strong safety requirements on such real-time cyber-physical systems, platforms are often designed with enough reservation such that the system remains real-time even if it is experiencing the worst-case execution time. We conducted a measurement study on eight popular CPS systems and found the worst-case execution time is often at least five times the average run time. In this paper, we propose opportunistic data flow integrity, OP-DFI, that takes advantage of the system reservation to enforce data flow integrity to the CPS software. To avoid impacting the real-time property, OP-DFI tackles the challenge of slack estimation and run-time policy swapping to take advantage of the extra time in the system opportunistically. To ensure the security protection remains coherent, OP-DFI leverages in-line reference monitors and hardware-assisted features to perform dynamic fine-grained sandboxing. We evaluated OP-DFI on eight real-time CPS. With a worst-case execution time overhead of 2.7%, OP-DFI effectively performs DFI checking on 95.5% of all memory operations and 99.3% of safety-critical control-related memory operations on average. 
    more » « less
  4. Tor M. Aamodt ; Natalie D. Enright Jerger ; Michael M. Swift (Ed.)
    System calls are a critical building block in many serious security attacks, such as control-flow hijacking and privilege escalation attacks. Security-sensitive system calls (e.g., execve, mprotect), especially play a major role in completing attacks. Yet, few defense efforts focus to ensure their legitimate usage, allowing attackers to maliciously leverage system calls in attacks. In this paper, we propose a novel System Call Integrity, which enforces the correct use of system calls throughout runtime. We propose three new contexts enforcing (1) which system call is called and how it is invoked (Call Type), (2) how a system call is reached (Control Flow), and (3) that arguments are not corrupted (Argument Integrity). Our defense mechanism thwarts attacks by breaking the critical building block in their attack chains. We implement Bastion, as a compiler and runtime monitor system, to demonstrate the efficacy of the three system call contexts. Our security case study shows that Bastion can effectively stop all the attacks including real-world exploits and recent advanced attack strategies. Deploying Bastion on three popular system call-intensive programs, NGINX, SQLite, and vsFTPd, we show Bastion is secure and practical, demonstrating overhead of 0.60%, 2.01%, and 1.65%, respectively 
    more » « less
  5. Modern applications use storage systems in complex and often surprising ways. Tracing system calls is a common approach to understanding applications' behavior, allowing offline analysis and enabling replay in other environments. But current system-call tracing tools have drawbacks: (1) they often omit some information---such as raw data buffers---needed for full analysis; (2) they have high overheads; (3) they often use non-portable trace formats; and (4) they may not offer useful and scalable analysis and replay tools. We have developed Re-Animator, a powerful system-call tracing tool that focuses on storage-related calls and collects maximal information, capturing complete data buffers and writing all traces in the standard DataSeries format. We also created a prototype replayer that focuses on calls related to file-system state. We evaluated our system on long-running server applications such as key-value stores and databases. Our tracer has an average overhead of only 1.8-2.3×, but the overhead can be as low as 5% for I/O-bound applications. Our replayer verifies that its actions are correct, and faithfully reproduces the logical file system state generated by the original application. 
    more » « less