skip to main content


Title: Traversability of multi-boundary wormholes
A bstract We generalize the Gao-Jafferis-Wall construction of traversable two-sided wormholes to multi-boundary wormholes. In our construction, we take the background spacetime to be multi-boundary black holes in AdS 3 . We work in the hot limit where the dual CFT state in certain regions locally resembles the thermofield double state. Furthermore, in these regions, the hot limit makes the causal shadow exponentially small. Based on these two features of the hot limit, and with the three-boundary wormhole as our main example, we show that traversability between any two asymptotic regions in a multi-boundary wormhole can be triggered using a double-trace deformation. In particular, the two boundary regions need not have the same temperature and angular momentum. We discuss the non-trivial angular dependence of traversability in our construction, as well as the effect of the causal shadow region.  more » « less
Award ID(s):
1801805
NSF-PAR ID:
10293129
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Journal of High Energy Physics
Volume:
2021
Issue:
4
ISSN:
1029-8479
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    A bstract We describe the construction of traversable wormholes with multiple mouths in four spacetime dimensions and discuss associated quantum entanglement. Our wormholes may be traversed between any pair of mouths. In particular, in the three-mouth case they have fundamental group F 2 (the free group on two generators). By contrast, connecting three regions A, B, C in pairs ( AB , BC , and AC ) using three separate wormholes would give fundamental group F 3 . Our solutions are asymptotically flat up to the presence of possible magnetic fluxes or cosmic strings that extend to infinity. The construction begins with a two-mouth traversable wormhole supported by backreaction from quantum fields. Inserting a sufficiently small black hole into its throat preserves traversability between the original two mouths. This black hole is taken to be the mouth of another wormhole connecting the original throat to a new distant region of spacetime. Making the new wormhole traversable in a manner similar to the original two-mouth wormhole provides the desired causal connections. From a dual field theory point of view, when AdS asymptotics are added to our construction, multiparty entanglement may play an important role in the traversability of the resulting wormhole. 
    more » « less
  2. null (Ed.)
    A bstract This work is the first step in a two-part investigation of real-time replica wormholes. Here we study the associated real-time gravitational path integral and construct the variational principle that will define its saddle-points. We also describe the general structure of the resulting real-time replica wormhole saddles, setting the stage for construction of explicit examples. These saddles necessarily involve complex metrics, and thus are accessed by deforming the original real contour of integration. However, the construction of these saddles need not rely on analytic continuation, and our formulation can be used even in the presence of non-analytic boundary-sources. Furthermore, at least for replica- and CPT-symmetric saddles we show that the metrics may be taken to be real in regions spacelike separated from a so-called ‘splitting surface’. This feature is an important hallmark of unitarity in a field theory dual. 
    more » « less
  3. A<sc>bstract</sc>

    As shown by Louko and Sorkin in 1995, topology change in Lorentzian signature involves spacetimes with singular points, which they called crotches. We modify their construction to obtain Lorentzian semiclassical wormholes in asymptotically AdS. These solutions are obtained by inserting crotches on known saddles, like the double-cone or multiple copies of the Lorentzian black hole. The crotches implement swap-identifications, and are classically located near an extremal surface. The resulting Lorentzian wormholes have an instanton action equal to their area, which is responsible for topological suppression in any number of dimensions.

    We conjecture that including such Lorentzian wormhole spacetimes is equivalent to path integrating over all mostly Euclidean smooth spacetimes. We present evidence for this by reproducing semiclassical features of the genus expansion of the spectral form factor, and of a late-time two point function, by summing over the moduli space of Lorentzian wormholes. As a final piece of evidence, we discuss the Lorentzian version of West-Coast replica wormholes.

     
    more » « less
  4. A<sc>bstract</sc>

    We construct a Type IIvon Neumann algebra that describes the largeNphysics of single-trace operators in AdS/CFT in the microcanonical ensemble, where there is no need to include perturbative 1/Ncorrections. Using only the extrapolate dictionary, we show that the entropy of semiclassical states on this algebra is holographically dual to the generalized entropy of the black hole bifurcation surface. From a boundary perspective, this constitutes a derivation of a special case of the QES prescription without any use of Euclidean gravity or replicas; from a purely bulk perspective, it is a derivation of the quantum-corrected Bekenstein-Hawking formula as the entropy of an explicit algebra in theG →0 limit of Lorentzian effective field theory quantum gravity. In a limit where a black hole is first allowed to equilibrate and then is later potentially re-excited, we show that the generalized second law is a direct consequence of the monotonicity of the entropy of algebras under trace-preserving inclusions. Finally, by considering excitations that are separated by more than a scrambling time we construct a “free product” von Neumann algebra that describes the semiclassical physics of long wormholes supported by shocks. We compute Rényi entropies for this algebra and show that they are equal to a sum over saddles associated to quantum extremal surfaces in the wormhole. Surprisingly, however, the saddles associated to “bulge” quantum extremal surfaces contribute with a negative sign.

     
    more » « less
  5. A<sc>bstract</sc>

    We study further the duality between semiclassical AdS3and formal CFT2ensembles. First, we study torus wormholes (Maldacena-Maoz wormholes with two torus boundaries) with one insertion or two insertions on each boundary and find that they give non-decaying contribution to the product of two torus one-point or two-point functions at late-time. Second, we study the ℤ2quotients of a torus wormhole such that the outcome has one boundary. We identify quotients that give non-decaying contributions to the torus two-point function at late-time.

    We comment on reflection (R) or time-reversal (T) symmetry vs. the combination RT that is a symmetry of any relativistic field theory. RT symmetry itself implies that to the extent that a relativistic quantum field theory exhibits random matrix statistics it should be of the GOE type for bosonic states and of the GSE type for fermionic states. We discuss related implications of these symmetries for wormholes.

     
    more » « less