skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Hermite Interpolation With Error Correction: Fields of Zero or Large Characteristic and Large Error Rate
Multiplicity code decoders are based on Hermite polynomial interpolation with error correction. In order to have a unique Hermite interpolant one assumes that the field of scalars has characteristic 0 or >= k+1, where k is the maximum order of the derivatives in the list of values of the polynomial and its derivatives which are interpolated. For scalar fields of characteristic k+1, the minimum number of values for interpolating a polynomial of degree <= D is D+1+2E(k+1) when <= E of the values are erroneous. Here we give an error-correcting Hermite interpolation algorithm that can tolerate more errors, assuming that the characteristic of the scalar field is either 0 or >= D+1. Our algorithm requires (k+1)D + 1 - (k+1)k/2 + 2E values. As an example, we consider k = 2. If the error ratio (number of errors)/(number of evaluations) <= 0.16, our new algorithm requires ceiling( (4+7/17) D - (1+8 /17) ) values, while multiplicity decoding requires 25D+25 values. If the error ratio is <= 0.2, our algorithm requires 5D-2 evaluations over characteristic 0 or >= D+1, while multiplicity decoding for an error ratio 0.2 over fields of characteristic 3 is not possible for D >= 3. Our algorithm is based on Reed-Solomon interpolation without multiplicities, which becomes possible for Hermite interpolation because of the high redundancy necessary for error-correction.  more » « less
Award ID(s):
1717100
PAR ID:
10293314
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
ISSAC '21: Proceedings of the 2021 on International Symposium on Symbolic and Algebraic Computation
Page Range / eLocation ID:
241 to 247
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We generalize Hermite interpolation with error correction, which is the methodology for multiplicity algebraic error correction codes, to Hermite interpolation of a rational function over a field K from function and function derivative values. We present an interpolation algorithm that can locate and correct <= E errors at distinct arguments y in K where at least one of the values or values of a derivative is incorrect. The upper bound E for the number of such y is input. Our algorithm sufficiently oversamples the rational function to guarantee a unique interpolant. We sample (f/g)^(j)(y[i]) for 0 <= j <= L[i], 1 <= i <= n, y[i] distinct, where (f/g)^(j) is the j-th derivative of the rational function f/g, f, g in K[x], GCD(f,g)=1, g <= 0, and where N = (L[1]+1)+...+(L[n]+1) >= C + D + 1 + 2(L[1]+1) + ... + 2(L[E]+1) where C is an upper bound for deg(f) and D an upper bound for deg(g), which are input to our algorithm. The arguments y[i] can be poles, which is truly or falsely indicated by a function value infinity with the corresponding L[i]=0. Our results remain valid for fields K of characteristic >= 1 + max L[i]. Our algorithm has the same asymptotic arithmetic complexity as that for classical Hermite interpolation, namely soft-O(N). For polynomials, that is, g=1, and a uniform derivative profile L[1] = ... = L[n], our algorithm specializes to the univariate multiplicity code decoder that is based on the 1986 Welch-Berlekamp algorithm. 
    more » « less
  2. Amir Hashemi (Ed.)
    We present Hermite polynomial interpolation algorithms that for a sparse univariate polynomial f with coefficients from a field compute the polynomial from fewer points than the classical algorithms. If the interpolating polynomial f has t terms, our algorithms, require argument/value triples (w^i, f(w^i), f'(w^i)) for i=0,...,t + ceiling( (t+1)/2 ) - 1, where w is randomly sampled and the probability of a correct output is determined from a degree bound for f. With f' we denote the derivative of f. Our algorithms generalize to multivariate polynomials, higher derivatives and sparsity with respect to Chebyshev polynomial bases. We have algorithms that can correct errors in the points by oversampling at a limited number of good values. If an upper bound B >= t for the number of terms is given, our algorithms use a randomly selected w and, with high probability, ceiling( t/2 ) + B triples, but then never return an incorrect output. The algorithms are based on Prony's sparse interpolation algorithm. While Prony's algorithm and its variants use fewer values, namely, 2t+1 and t+B values f(w^i), respectively, they need more arguments w^i. The situation mirrors that in algebraic error correcting codes, where the Reed-Solomon code requires fewer values than the multiplicity code, which is based on Hermite interpolation, but the Reed-Solomon code requires more distinct arguments. Our sparse Hermite interpolation algorithms can interpolate polynomials over finite fields and over the complex numbers, and from floating point data. Our Prony-based approach does not encounter the Birkhoff phenomenon of Hermite interpolation, when a gap in the derivative values causes multiple interpolants. We can interpolate from t+1 values of f and 2t-1 values of f'. 
    more » « less
  3. The multiplicity Schwartz-Zippel lemma bounds the total multiplicity of zeroes of a multivariate polynomial on a product set. This lemma motivates the multiplicity codes of Kopparty, Saraf and Yekhanin [J. ACM, 2014], who showed how to use this lemma to construct high-rate locally-decodable codes. However, the algorithmic results about these codes crucially rely on the fact that the polynomials are evaluated on a vector space and not an arbitrary product set. In this work, we show how to decode multivariate multiplicity codes of large multiplicities in polynomial time over finite product sets (over fields of large characteristic and zero characteristic). Previously such decoding algorithms were not known even for a positive fraction of errors. In contrast, our work goes all the way to the distance of the code and in particular exceeds both the unique-decoding bound and the Johnson radius. For errors exceeding the Johnson radius, even combinatorial list-decodablity of these codes was not known. Our algorithm is an application of the classical polynomial method directly to the multivariate setting. In particular, we do not rely on a reduction from the multivariate to the univariate case as is typical of many of the existing results on decoding codes based on multivariate polynomials. However, a vanilla application of the polynomial method in the multivariate setting does not yield a polynomial upper bound on the list size. We obtain a polynomial bound on the list size by taking an alternative view of multivariate multiplicity codes. In this view, we glue all the partial derivatives of the same order together using a fresh set z of variables. We then apply the polynomial method by viewing this as a problem over the field F(z) of rational functions in z . 
    more » « less
  4. In this paper, we construct new t-server Private Information Retrieval (PIR) schemes with communication complexity subpolynomial in the previously best known, for all but finitely many t. Our results are based on combining derivatives (in the spirit of Woodruff-Yekhanin) with the Matching Vector based PIRs of Yekhanin and Efremenko. Previously such a combination was achieved in an ingenious way by Dvir and Gopi, using polynomials and derivatives over certain exotic rings, en route to their fundamental result giving the first 2-server PIR with subpolynomial communication. Our improved PIRs are based on two ingredients: - We develop a new and direct approach to combine derivatives with Matching Vector based PIRs. This approach is much simpler than that of Dvir-Gopi: it works over the same field as the original PIRs, and only uses elementary properties of polynomials and derivatives. - A key subproblem that arises in the above approach is a higher-order polynomial interpolation problem. We show how "sparse S-decoding polynomials", a powerful tool from the original constructions of Matching Vector PIRs, can be used to solve this higher-order polynomial interpolation problem using surprisingly few higer-order evaluations. Using the known sparse S-decoding polynomials, in combination with our ideas leads to our improved PIRs. Notably, we get a 3-server PIR scheme with communication 2O∼((logn)1/3), improving upon the previously best known communication of 2O∼(logn√) due to Efremenko. 
    more » « less
  5. null (Ed.)
    We give new and efficient black-box reconstruction algorithms for some classes of depth-3 arithmetic circuits. As a consequence, we obtain the first efficient algorithm for computing the tensor rank and for finding the optimal tensor decomposition as a sum of rank-one tensors when then input is a constant-rank tensor. More specifically, we provide efficient learning algorithms that run in randomized polynomial time over general fields and in deterministic polynomial time over and for the following classes: 1) Set-multilinear depth-3 circuits of constant top fan-in ((k) circuits). As a consequence of our algorithm, we obtain the first polynomial time algorithm for tensor rank computation and optimal tensor decomposition of constant-rank tensors. This result holds for d dimensional tensors for any d, but is interesting even for d=3. 2) Sums of powers of constantly many linear forms ((k) circuits). As a consequence we obtain the first polynomial-time algorithm for tensor rank computation and optimal tensor decomposition of constant-rank symmetric tensors. 3) Multilinear depth-3 circuits of constant top fan-in (multilinear (k) circuits). Our algorithm works over all fields of characteristic 0 or large enough characteristic. Prior to our work the only efficient algorithms known were over polynomially-sized finite fields (see. Karnin-Shpilka 09’). Prior to our work, the only polynomial-time or even subexponential-time algorithms known (deterministic or randomized) for subclasses of (k) circuits that also work over large/infinite fields were for the setting when the top fan-in k is at most 2 (see Sinha 16’ and Sinha 20’). 
    more » « less