Hardware security creates a hardware-based security foundation for secure and reliable operation of systems and applications used in our modern life. The presence of design for security, security assurance, and general security design life cycle practices in product life cycle of many large semiconductor design and manufacturing companies these days indicates that the importance of hardware security has been very well observed in industry. However, the high cost, time, and effort for building security into designs and assuring their security - due to using many manual processes - is still an important obstacle for economy of secure product development. This paper presents several promising directions for automation of design for security and security assurance practices to reduce the overall time and cost of secure product development. First, we present security verification challenges of SoCs, possible vulnerabilities that could be introduced inadvertently by tools mapping a design model in one level of abstraction to its lower level, and our solution to the problem by automatically mapping security properties from one level to its lower level incorporating techniques for extension and expansion of the properties. Then, we discuss the foundation necessary for further automation of formal security analysis of a design by incorporating threat model and common security vulnerabilities into an intermediate representation of a hardware model to be used to automatically determine if there is a chance for direct or indirect flow of information to compromise confidentiality or integrity of security assets. Finally, we discuss a pre-silicon-based framework for practical and time-and-cost effective power-side channel leakage analysis, root-causing the side-channel leakage by using the automatically generated leakage profile of circuit nodes, providing insight to mitigate the side-channel leakage by addressing the high leakage nodes, and assuring the effectiveness of the mitigation by reprofiling the leakage to prove its acceptable level of elimination. We hope that sharing these efforts and ideas with the security research community can accelerate the evolution of security-aware CAD tools targeted to design for security and security assurance to enrich the ecosystem to have tools from multiple vendors with more capabilities and higher performance.
more »
« less
A Formal Framework for Gate- Level Information Leakage Using Z3
The hardware intellectual property (IP) cores from untrusted vendors are widely used, which has raised security concerns for system designers. Although formal methods provide powerful solutions for detecting malicious behaviors in hardware, the participation of manual work prevents the methods from practical applications. Information Flow Tracking (IFT) is a powerful approach to prevent sensitive information leakage. However, existing IFT solutions are either introducing overhead in hardware or lacking practical automatic working procedures. To alleviate these challenges, we propose a framework that fully automates information leakage detection in the gate level of hardware. This framework introduces Z3, an SMT solver, in checking the violation of the confidentiality automatically. On the other hand, a parser converting the gate-level hardware to the formal model is developed to further remove the manual workload. To validate the effectiveness, the proposed solution is tested on 11 gate-level netlist benchmarks. The Trojans leaking information from circuit outputs can be automatically detected. We also account for time consumption during the whole working procedure to show the efficiency of the proposed approach.
more »
« less
- Award ID(s):
- 2019310
- PAR ID:
- 10293620
- Date Published:
- Journal Name:
- 15 Dec 2020 in 2020 Asian Hardware Oriented Security and Trust Symposium (AsianHOST)
- Page Range / eLocation ID:
- 1 to 6
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Quantum computing technology may soon deliver revolutionary improvements in algorithmic performance, but it is useful only if computed answers are correct. While hardware-level decoherence errors have garnered significant attention, a less recognized obstacle to correctness is that of human programming errors—“bugs.” Techniques familiar to most programmers from the classical domain for avoiding, discovering, and diagnosing bugs do not easily transfer, at scale, to the quantum domain because of its unique characteristics. To address this problem, we have been working to adapt formal methods to quantum programming. With such methods, a programmer writes a mathematical specification alongside the program and semiautomatically proves the program correct with respect to it. The proof’s validity is automatically confirmed—certified—by a “proof assistant.” Formal methods have successfully yielded high-assurance classical software artifacts, and the underlying technology has produced certified proofs of major mathematical theorems. As a demonstration of the feasibility of applying formal methods to quantum programming, we present a formally certified end-to-end implementation of Shor’s prime factorization algorithm, developed as part of a framework for applying the certified approach to general applications. By leveraging our framework, one can significantly reduce the effects of human errors and obtain a high-assurance implementation of large-scale quantum applications in a principled way.more » « less
-
There is a shortage of training programs for research cyber-facilitators and the need is only growing, especially in academia. This paper will discuss the importance of developing a workforce at the undergraduate level, creating a formal program for training and mentoring undergraduates in Research Computing at Purdue University, and how the approach to mentoring has evolved. The hands-on training and mentoring program has changed from one with students working as junior HPC administrators, performing hardware break-fix in a relative vacuum, to one with students working closely with their mentors, building real-world cyberinfrastructure solutions, such as distributed computing environments. More recently, the mentoring program has grown to include facilitating and supporting research applications with the Purdue user community. Finally, outcomes for the students in these programs lessons learned will be discussed.more » « less
-
Information leaks in software can unintentionally reveal private data, yet they are hard to detect and fix. Although several methods have been proposed to detect leakage, such as static verification-based approaches, they require specialist knowledge, and are time-consuming. Recently, we introduced HyperGI, a dynamic, hypertest-based approach that can detect and produce potential fixes for hyperproperty violations. In particular, we focused on violations of the noninterference property, as it results in information flow leakage. Our instantiation of HyperGI was able to detect and reduce leakage in three small programs. Its fitness function tried to balance information leakage and program correctness but, as we pointed out, there may be tradeoffs between keeping program semantics and reducing information leakage that require developer decisions. In this work we ask if it is possible to automatically detect and repair information leakage in more realistic programs without requiring specialist knowledge. We instantiate a multi-objective version of HyperGI in a tool, called LeakReducer, which explicitly encodes the tradeoff between program correctness and information leakage. We apply LeakReducer to six leaky programs, including the well-known Heartbleed bug. LeakReducer is able to detect leakage in all, in contrast to state-of-the-art fuzzers, detecting leakage in only two programs. Moreover, LeakReducer is able to reduce leakage in all subjects, with comparable results to previous work, while scaling to much larger software.more » « less
-
Low-rank compression is an important model compression strategy for obtaining compact neural network models. In general, because the rank values directly determine the model complexity and model accuracy, proper selection of layer-wise rank is very critical and desired. To date, though many low-rank compression approaches, either selecting the ranks in a manual or automatic way, have been proposed, they suffer from costly manual trials or unsatisfied compression performance. In addition, all of the existing works are not designed in a hardware-aware way, limiting the practical performance of the compressed models on real-world hardware platforms. To address these challenges, in this paper we propose HALOC, a hardware-aware automatic low-rank compression framework. By interpreting automatic rank selection from an architecture search perspective, we develop an end-to-end solution to determine the suitable layer-wise ranks in a differentiable and hardware-aware way. We further propose design principles and mitigation strategy to efficiently explore the rank space and reduce the potential interference problem.Experimental results on different datasets and hardware platforms demonstrate the effectiveness of our proposed approach. On CIFAR-10 dataset, HALOC enables 0.07% and 0.38% accuracy increase over the uncompressed ResNet-20 and VGG-16 models with 72.20% and 86.44% fewer FLOPs, respectively. On ImageNet dataset, HALOC achieves 0.9% higher top-1 accuracy than the original ResNet-18 model with 66.16% fewer FLOPs. HALOC also shows 0.66% higher top-1 accuracy increase than the state-of-the-art automatic low-rank compression solution with fewer computational and memory costs. In addition, HALOC demonstrates the practical speedups on different hardware platforms, verified by the measurement results on desktop GPU, embedded GPU and ASIC accelerator.more » « less
An official website of the United States government

