skip to main content

Title: Experimental Investigation on Forming Limit Curve at Elevated Temperature Through Dome and Biaxial Test
The characteristics of metal and materials are very important to design any component so that it should not fail in the life of the service. The properties of the materials are also an important consideration while setting the manufacturing parameters which deforms the raw material to give the design shape without providing any defect or fracture. For centuries the commonly used method to characterize the material is the traditional uniaxial tension test. The standard has been created for this test by American Standard for Testing Materials (ASTM) – E8. This specimen is traditionally been used to test the materials and extract the properties needed for designing and manufacturing. It should be noted that the uniaxial tension test uses one axis to test the material i.e., the material is pulled in one direction to extract the properties. The data acquired from this test found enough for manufacturing operations of simple forming where one axis stretching is dominant. Recently a sudden increase in the usage of automotive vehicles results in sudden increases in fuel consumption which results in an increase in air pollution. To cope up with this challenge federal government is implying the stricter environmental regulation to decrease air pollution. To more » save from the environmental regulation penalty vehicle industry is researching innovation which would reduce vehicle weight and decrease fuel consumption. Thus, the innovation related to light-weighting is not only an option anymore but became a mandatory necessity to decrease fuel consumption. To achieve this target, the industry has been looking at fabricating components from high strength to ultra-high strength steels or lightweight materials. This need is driven by the requirement of 54 miles per gallon by 2025. In addition, the complexity in design increased where multiple individual parts are eliminated. This integrated complex part needs the complex manufacturing forming operation as well as the process like warm or hot forming for maximum formability. The complex forming process will induce the multi-axial stress states in the part, which is found difficult to predict using conventional tools like tension test material characterization. In many pieces of literature limiting dome height and bulge tests were suggested analyzing these multi-axial stress states. However, these tests limit the possibilities of applying multi-axial loading and resulting stress patterns due to contact surfaces. Thus, a test machine called biaxial test is devised which would provide the capability to test the specimen in multi-axial stress states with varying load. In this paper, two processes, limiting dome test and biaxial test were experimented to plot the forming limit curve. The forming limit curve serves the tool for the design of die for manufacturing operation. For experiments, the cruciform test specimens were used in both limiting dome test and biaxial test and tested at elevated temperatures. The forming limit curve from both tests was plotted and compared. In addition, the strain path, forming, and formability was investigated and the difference between the tests was provided. « less
Authors:
; ;
Award ID(s):
1711603
Publication Date:
NSF-PAR ID:
10293636
Journal Name:
Proceedings of the ASME 2020 International Mechanical Engineering Congress and Exposition
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Intracranial aneurysms (ICAs) are focal dilatations that imply a weakening of the brain artery. Incidental rupture of an ICA is increasingly responsible for significant mortality and morbidity in the American’s aging population. Previous studies have quantified the pressure-volume characteristics, uniaxial mechanical properties, and morphological features of human aneurysms. In this pilot study,for the first time, we comprehensively quantified themechanical,collagen fiber microstructural, andmorphologicalproperties of one resected human posterior inferior cerebellar artery aneurysm. The tissue from the dome of a right posterior inferior cerebral aneurysm was first mechanically characterized using biaxial tension and stress relaxation tests. Then, the load-dependent collagen fibermore »architecture of the aneurysm tissue was quantified using an in-house polarized spatial frequency domain imaging system. Finally, optical coherence tomography and histological procedures were used to quantify the tissue’s microstructural morphology. Mechanically, the tissue was shown to exhibit hysteresis, a nonlinear stress-strain response, and material anisotropy. Moreover, the unloaded collagen fiber architecture of the tissue was predominantly aligned with the testingY-direction and rotated towards theX-direction under increasing equibiaxial loading. Furthermore, our histological analysis showed a considerable damage to the morphological integrity of the tissue, including lack of elastin, intimal thickening, and calcium deposition. This new unified characterization framework can be extended to better understand the mechanics-microstructure interrelationship of aneurysm tissues at different time points of the formation or growth. Such specimen-specific information is anticipated to provide valuable insight that may improve our current understanding of aneurysm growth and rupture potential.

    « less
  2. Daehn G., Cao J. (Ed.)
    By following varying deformation paths, e.g., a linear path to equibiaxial loading versus a bilinear path of uniaxial loading followed by biaxial loading, the same final strain state can be achieved. However, the stress state that the material is subjected to is considerably different due to the varying deformation. This is of interest in a growing field of stress superposition to improve formability and manipulate final part properties in metal forming applications. One potential application is forming patient-specific, trauma fixation hardware with differing strength and weight reduction requirements in various regions. In this paper, experiments were performed on a custommore »fabricated cruciform machine with the goal of subjecting stainless steel 316L to various deformation paths. A novel cruciform specimen geometry was designed in collaboration with the US National Institute of Standards and Technology to achieve large strain values in the gauge region. Digital Image Correlation was utilized to measure surface strain fields in real time.« less
  3. Manufacturers invested in a diverse array of industries, ranging from automotive to biomedical, are seeking methods to improve material processing in an effort to decrease costs and increase efficiency. Many parts produced by these suppliers require forming operations during their fabrication. Forming processes are innately complex and involve a multitude of parameters affecting the final part in several ways. Examples of these parameters include temperature, strain rate, deformation path, and friction. These parameters influence the final part geometry, strength, surface finish, etc. Previous studies have shown that varying the deformation path during forming can lead to increased formability. However, amore »fundamental understanding of how to control these paths to optimize the process has yet to be determined. Adding to the complexity, as the forming process is scaled down for micromanufacturing, additional parameters, such as grain size and microstructure transformations, must be considered. In this paper, an analytical model is proposed to calculate strain-paths with one or two loading segments and their associated stress-paths. The model is created for investigations of stainless steel 316L using a microtube inflation/tension testing machine. This machine allows for the implementation of two segment strain-paths through biaxial loading consisting of applied force and internal pressure. The model can be adjusted, based on the desired forming process or available equipment, to output the appropriate parameters for implementation, such as force, displacement, and pressure.« less
  4. Meyendorf, Norbert G. ; Farhangdoust, Saman (Ed.)
    Metal-matrix composites with active components have been investigated as a way to functionalize metals. As opposed to surface-mounted approaches, smart materials embedded in metals can be effectively shielded against the environment while providing in-situ sensing, health monitoring, actuation, or energy harvesting functions. Typical manufacturing approaches can be problematic, however, in that they may physically damage the smart material or degrade its electromechanical properties. For instance, non-resin-based embedment procedures such as powder metallurgy involve isostatic compression and diffusion bonding, leading to high process temperatures and breakdown of the electromechanical properties of the active component to be embedded. This paper presents themore »development and characterization of an aluminum-matrix composite embedded with piezoelectric polyvinylidene fluoride (PVDF) sensors using ultrasonic additive manufacturing (UAM). UAM incorporates the principles of solid-state, ultrasonic metal welding and subtractive processes to fabricate metal-matrices with seamlessly embedded smart materials and without thermal loading. As implemented in this study, the UAM process uses as-received, commercial Al 6061 tape foilstock and TE Connectivity PVDF film. In order to increase the mechanical coupling between the sensor and the metal-matrix without the aid of adhesives, the PVDF sensor is embedded with an empirically optimized pre-compression defined by the tape foils welded above the sensor. The specimen is characterized by tensile (d31 mode), bending (d31 mode), and compression tests (d33 mode) to evaluate its functional performance. Within the investigated load range, the specimen exhibits open-circuit sensitivities of 4.6 mV/N under uniaxial tension and 9.7 mV/N under compressive impulse tests with better than 95% linearity and frequency bandwidth of several kilohertz. The technology presented in this study could be applied for load and tactile sensing, impact detection and localization, thermal measurements, energy harvesting, and non-destructive testing applications.« less
  5. Abstract

    In this paper, finite element analyses were conducted to investigate the stress and strain states resulting from varying the deformation of stainless steel 316L under biaxial loading. To that end, a biaxial specimen geometry was designed in collaboration with the US National Institute of Standards and Technology (NIST) to achieve large and uniform strain values in the central pocket region. Special care was taken to ensure that the specimen design could be readily manufactured with available resources. Simultaneously, the specimen design criteria required an acceptable strain uniformity in a sufficiently large pocket section to allow for accurate deformation andmore »austenite to martensite phase fraction measurements. This demonstrates the concept of altering the final material properties through stress superposition. Numerical results show that nearly linear curves were observed in the strain path plots. The minimum uniform deformation area for the 4:1 case had a radius of ∼1 mm, which is sufficient for experimental analyses, e.g., digital imaging correlation and electron beam backscatter diffraction. As an application for such heterogeneous materials, patient specific trauma fixation hardware, which are surgically implanted to set broken bones during healing, require high strength in areas where screws are located, i.e., martensite phase, yet low weight elsewhere.

    « less