Uniaxial tension is a universal material characterization experiment. However, studies have shown that increased formability can be achieved with simultaneous bending and unbending of the material. This so-called continuous bending under tension process is an example of bending stress superposition to a uniaxial tension process. In this research, experiments are conducted on stainless steel 304 to investigate the effects of bending stress superposition on the austenite to martensite phase transformation. Two vortex tubes are mounted to the carriage of the machine and used to decrease the temperature in a localized region of the specimen to evaluate two temperature conditions. The in-situ strain and temperature fields are captured using 3D digital image correlation and infrared cameras. The deformation induced α′ -martensite volume fraction is measured at regular intervals along the deformed gauge length using a Feritscope. The number of cycles that the rollers traverse the gauge length, corresponding to the strain level, is also varied to create five conditions. The deformed specimens revealed heterogeneous martensite transformation along the gauge length due to the non-uniform temperature fields observed for each test condition. Decreasing the temperature and increasing the number of cycles led to the highest amount of phase transformation for this bending-tension superposed process. These results provide insight on how stress superposition can be applied to vary the phase transformation in more complex manufacturing processes, such as incremental forming, which combines bending, tension, and shear deformation.
more »
« less
Experimental Investigation on Forming Limit Curve at Elevated Temperature Through Dome and Biaxial Test
The characteristics of metal and materials are very important to design any component so that it should not fail in the life of the service. The properties of the materials are also an important consideration while setting the manufacturing parameters which deforms the raw material to give the design shape without providing any defect or fracture. For centuries the commonly used method to characterize the material is the traditional uniaxial tension test. The standard has been created for this test by American Standard for Testing Materials (ASTM) – E8. This specimen is traditionally been used to test the materials and extract the properties needed for designing and manufacturing. It should be noted that the uniaxial tension test uses one axis to test the material i.e., the material is pulled in one direction to extract the properties. The data acquired from this test found enough for manufacturing operations of simple forming where one axis stretching is dominant. Recently a sudden increase in the usage of automotive vehicles results in sudden increases in fuel consumption which results in an increase in air pollution. To cope up with this challenge federal government is implying the stricter environmental regulation to decrease air pollution. To save from the environmental regulation penalty vehicle industry is researching innovation which would reduce vehicle weight and decrease fuel consumption. Thus, the innovation related to light-weighting is not only an option anymore but became a mandatory necessity to decrease fuel consumption. To achieve this target, the industry has been looking at fabricating components from high strength to ultra-high strength steels or lightweight materials. This need is driven by the requirement of 54 miles per gallon by 2025. In addition, the complexity in design increased where multiple individual parts are eliminated. This integrated complex part needs the complex manufacturing forming operation as well as the process like warm or hot forming for maximum formability. The complex forming process will induce the multi-axial stress states in the part, which is found difficult to predict using conventional tools like tension test material characterization. In many pieces of literature limiting dome height and bulge tests were suggested analyzing these multi-axial stress states. However, these tests limit the possibilities of applying multi-axial loading and resulting stress patterns due to contact surfaces. Thus, a test machine called biaxial test is devised which would provide the capability to test the specimen in multi-axial stress states with varying load. In this paper, two processes, limiting dome test and biaxial test were experimented to plot the forming limit curve. The forming limit curve serves the tool for the design of die for manufacturing operation. For experiments, the cruciform test specimens were used in both limiting dome test and biaxial test and tested at elevated temperatures. The forming limit curve from both tests was plotted and compared. In addition, the strain path, forming, and formability was investigated and the difference between the tests was provided.
more »
« less
- Award ID(s):
- 1711603
- PAR ID:
- 10293636
- Date Published:
- Journal Name:
- Proceedings of the ASME 2020 International Mechanical Engineering Congress and Exposition
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
TBF 1180 steel was plastically deformed under different strain paths in order to study both the ductility and RA transformation rates. Specimens were prepared from a 1 mm thick sheet and then tested incrementally under uniaxial tension, plane-strain tension, and biaxial tension. The retained austenite (RA) levels were measured, as a function of the plastic strain, using electron backscatter diffraction (EBSD). The plane-strain tension specimens had the fastest rate of RA transformation as a function of strain, followed by uniaxial tension, and then biaxial tension. The forming limits were measured for each strain path, yielding major limit strains of 0.12 under uniaxial tension, 0.09 under plane-strain tension, and 0.16 under biaxial tension. These results were compared to prior work on a 1.2 mm Q&P 1180 steel sheet, which had a similar yield and ultimate tensile strength, but exhibited slightly greater forming limits than the TBF material. The visual inspection of the micrographs appeared to show an equiaxed RA morphology in the Q&P 1180 steel and a mixture of equiaxed and lamellar RA grains in the TBF 1180 steel. However, the statistics generated by EBSD revealed that both alloys had RA grains with essentially the same aspect ratios. The average RA grain size in the Q&P alloy was found to be about three times larger than that of the TBF alloy. As such, the small but consistent formability advantage exhibited by the Q&P 1180 alloy along all three strain paths can be attributed to its larger average RA grain size, where larger RA grain sizes correlated with a more gradual transformation rate.more » « less
-
Daehn G., Cao J. (Ed.)By following varying deformation paths, e.g., a linear path to equibiaxial loading versus a bilinear path of uniaxial loading followed by biaxial loading, the same final strain state can be achieved. However, the stress state that the material is subjected to is considerably different due to the varying deformation. This is of interest in a growing field of stress superposition to improve formability and manipulate final part properties in metal forming applications. One potential application is forming patient-specific, trauma fixation hardware with differing strength and weight reduction requirements in various regions. In this paper, experiments were performed on a custom fabricated cruciform machine with the goal of subjecting stainless steel 316L to various deformation paths. A novel cruciform specimen geometry was designed in collaboration with the US National Institute of Standards and Technology to achieve large strain values in the gauge region. Digital Image Correlation was utilized to measure surface strain fields in real time.more » « less
-
null (Ed.)Manufacturers invested in a diverse array of industries, ranging from automotive to biomedical, are seeking methods to improve material processing in an effort to decrease costs and increase efficiency. Many parts produced by these suppliers require forming operations during their fabrication. Forming processes are innately complex and involve a multitude of parameters affecting the final part in several ways. Examples of these parameters include temperature, strain rate, deformation path, and friction. These parameters influence the final part geometry, strength, surface finish, etc. Previous studies have shown that varying the deformation path during forming can lead to increased formability. However, a fundamental understanding of how to control these paths to optimize the process has yet to be determined. Adding to the complexity, as the forming process is scaled down for micromanufacturing, additional parameters, such as grain size and microstructure transformations, must be considered. In this paper, an analytical model is proposed to calculate strain-paths with one or two loading segments and their associated stress-paths. The model is created for investigations of stainless steel 316L using a microtube inflation/tension testing machine. This machine allows for the implementation of two segment strain-paths through biaxial loading consisting of applied force and internal pressure. The model can be adjusted, based on the desired forming process or available equipment, to output the appropriate parameters for implementation, such as force, displacement, and pressure.more » « less
An official website of the United States government

