skip to main content

Title: From downtown to the outskirts: a radio survey of the Orion Nebula Cluster
ABSTRACT We present a newly enlarged census of the compact radio population towards the Orion Nebula Cluster (ONC) using high-sensitivity continuum maps (3–10 $\mu$Jy beam−1) from a total of ∼30-h centimetre-wavelength observations over an area of ∼20 × 20 arcmin2 obtained in the C-band (4–8 GHz) with the Karl G. Jansky Very Large Array (VLA) in its high-resolution A-configuration. We thus complement our previous deep survey of the innermost areas of the ONC, now covering the field of view of the Chandra Orion Ultra-deep Project (COUP). Our catalogue contains 521 compact radio sources of which 198 are new detections. Overall, we find that 17 per cent of the (mostly stellar) COUP sources have radio counterparts, while 53 per cent of the radio sources have COUP counterparts. Most notably, the radio detection fraction of X-ray sources is higher in the inner cluster and almost constant for r > 3 arcmin (0.36 pc) from θ1 Ori C, suggesting a correlation between the radio emission mechanism of these sources and their distance from the most massive stars at the centre of the cluster, e.g. due to increased photoionisation of circumstellar discs. The combination with our previous observations 4 yr prior lead to the discovery of fast proper motions of up to more » ∼373 km s−1 from faint radio sources associated with ejecta of the OMC1 explosion. Finally, we search for strong radio variability. We found changes in flux density by a factor of ≲5 within our observations and a few sources with changes by a factor >10 on long time-scales of a few years. « less
; ; ;
Award ID(s):
Publication Date:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Page Range or eLocation-ID:
3169 to 3185
Sponsoring Org:
National Science Foundation
More Like this

    The triggering mechanism for the most luminous, quasar-like active galactic nuclei (AGN) remains a source of debate, with some studies favouring triggering via galaxy mergers, but others finding little evidence to support this mechanism. Here, we present deep Isaac Newton Telescope/Wide Field Camera imaging observations of a complete sample of 48 optically selected type 2 quasars – the QSOFEED sample ($L_{\rm [O\, \small {III}]}\gt 10^{8.5}\, \mathrm{L}_{\odot }$; z < 0.14). Based on visual inspection by eight classifiers, we find clear evidence that galaxy interactions are the dominant triggering mechanism for quasar activity in the local universe, with 65$^{+6}_{-7}$ per cent of the type 2 quasar hosts showing morphological features consistent with galaxy mergers or encounters, compared with only 22$^{+5}_{-4}$ per cent of a stellar-mass- and redshift-matched comparison sample of non-AGN galaxies – a 5σ difference. The type 2 quasar hosts are a factor of 3.0$^{+0.5}_{-0.8}$ more likely to be morphologically disturbed than their matched non-AGN counterparts, similar to our previous results for powerful 3CR radio AGN of comparable [O iii] emission-line luminosity and redshift. In contrast to the idea that quasars are triggered at the peaks of galaxy mergers as the two nuclei coalesce, and only become visible post-coalescence, the majority of morphologically disturbedmore »type 2 quasar sources in our sample are observed in the pre-coalescence phase (61$^{+8}_{-9}$ per cent). We argue that much of the apparent ambiguity that surrounds observational results in this field is a result of differences in the surface brightness depths of the observations, combined with the effects of cosmological surface brightness dimming.

    « less
  2. ABSTRACT We present optical and near-infrared imaging covering a ∼1.53 deg2 region in the Super-Cluster Assisted Shear Survey (SuperCLASS) field, which aims to make the first robust weak lensing measurement at radio wavelengths. We derive photometric redshifts for ≈176 000 sources down to $i^\prime _{\rm AB}\sim 24$ and present photometric redshifts for 1.4 GHz expanded Multi-Element Radio Linked Interferometer Network (e-MERLIN) and Karl G. Jansky Very Large Array (VLA) detected radio sources found in the central 0.26 deg2. We compile an initial catalogue of 149 radio sources brighter than S1.4 > 75 μJy and find their photometric redshifts span 0 < zphot < 4 with radio luminosities between 1021 and 1025 W Hz−1, with medians of $\langle z \rangle \, =0.55$ and $\langle L_{1.4}\rangle \, =1.9\times 10^{23}$ W Hz−1, respectively. We find 95 per cent of the μJy radio source sample (141/149) have spectral energy distributions (SEDs) best fit by star-forming templates while 5 per cent (8/149) are better fit by active galactic nuclei (AGN). Spectral indices are calculated for sources with radio observations from the VLA and Giant Metrewave Radio Telescope (GMRT) at 325 MHz, with an average spectral slope of α = 0.59 ± 0.04. Using the full photometric redshift catalogue, we construct a density map at the redshift of the known galaxy clusters,more »z = 0.20 ± 0.08. Four of the five clusters are prominently detected at $\gt 7\, \sigma$ in the density map and we confirm the photometric redshifts are consistent with previously measured spectra from a few galaxies at the cluster centres.« less

    Variability of a galaxy’s core radio source can be a significant consequence of active galactic nucleus accretion. However, this variability has not been well studied, particularly at high radio frequencies. As such, we report on a campaign monitoring the high radio frequency variability of 20 nearby, cool-core brightest cluster galaxies. From our representative sample, we show that most vary significantly on time-scales of approximately 1 yr and longer. Our highest cadence observations are at 15 GHz and are from the Owens Valley Radio Observatory. They have a median time interval of 7 d and mostly span between 8 and 13 yr. We apply a range of variability detection techniques to the sources’ light curves to analyse changes on week to decade long time-scales. Most notably, at least half of the sources show 20 per cent peak to trough variability on 3 yr time-scales, while at least a third vary by 60 per cent on 6 yr time-scales. Significant variability, which is important to studies of the Sunyaev–Zel’dovich Effect in the radio/sub-mm, is therefore a common feature of these sources. We also show how the variability relates to spectral properties at frequencies of up to 353 GHz using data from the Korean VLBI network, the NIKA2 instrument of the IRAMmore »30-m telescope, and the SCUBA-2 instrument of the James Clerk Maxwell Telescope.

    « less

    Our understanding of reionization has advanced considerably over the past decade, with several results now demonstrating that the intergalactic medium transitioned from substantially neutral at z = 7 to largely reionized at z = 6. However, little remains known about the sizes of ionized bubbles at z ≳ 7 as well as the galaxy overdensities which drive their growth. Fortunately, rest-ultraviolet (UV) spectroscopic observations offer a pathway towards characterizing these ionized bubbles thanks to the resonant nature of Lyman-alpha photons. In a previous work, we presented Ly α detections from three closely separated Lyman-break galaxies at z ≃ 6.8, suggesting the presence of a large (R > 1 physical Mpc) ionized bubble in the 1.5 deg2 COSMOS field. Here, we present new deep Ly α spectra of 10 UV-bright ($\mathrm{\mathit{ M}}_{\mathrm{UV}}^{} \le -20.4$) z ≃ 6.6–6.9 galaxies in the surrounding area, enabling us to better characterize this potential ionized bubble. We confidently detect (S/N > 7) Ly α emission at z = 6.701–6.882 in nine of ten observed galaxies, revealing that the large-scale volume spanned by these sources (characteristic radius R = 3.2 physical Mpc) traces a strong galaxy overdensity (N/〈N〉 ≳ 3). Our data additionally confirm that the Lymore »α emission of UV-bright galaxies in this volume is significantly enhanced, with 40 per cent (4/10) showing strong Ly α emission (equivalent width >25 Å) compared to the 8–9 per cent found on average at z ∼ 7. The median Ly α equivalent width of our observed galaxies is also ≈2 times that typical at z ∼ 7, consistent with expectations if a very large (R ∼ 3 physical Mpc) ionized bubble is allowing the Ly α photons to cosmologically redshift far into the damping wing before encountering H i.

    « less
  5. Abstract
    Excessive phosphorus (P) applications to croplands can contribute to eutrophication of surface waters through surface runoff and subsurface (leaching) losses. We analyzed leaching losses of total dissolved P (TDP) from no-till corn, hybrid poplar (Populus nigra X P. maximowiczii), switchgrass (Panicum virgatum), miscanthus (Miscanthus giganteus), native grasses, and restored prairie, all planted in 2008 on former cropland in Michigan, USA. All crops except corn (13 kg P ha−1 year−1) were grown without P fertilization. Biomass was harvested at the end of each growing season except for poplar. Soil water at 1.2 m depth was sampled weekly to biweekly for TDP determination during March–November 2009–2016 using tension lysimeters. Soil test P (0–25 cm depth) was measured every autumn. Soil water TDP concentrations were usually below levels where eutrophication of surface waters is frequently observed (&gt; 0.02 mg L−1) but often higher than in deep groundwater or nearby streams and lakes. Rates of P leaching, estimated from measured concentrations and modeled drainage, did not differ statistically among cropping systems across years; 7-year cropping system means ranged from 0.035 to 0.072 kg P ha−1 year−1 with large interannual variation. Leached P was positively related to STP, which decreased over the 7 years in all systems. These results indicate that both P-fertilized and unfertilized cropping systems mayMore>>